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INTRODUCTION 

Material properties like ski stiffness can be evaluated by field experiments or 

simulation calculations. Field measurements benefit from closeness to reality but 

often are difficult to reproduce. In every new run there always will be some, perhaps 

negligible, changes. Therefore, it is hard to judge whether observed effects are due 

the varied ski stiffness or something else. On the other hand in simulation it is quite 

simple to study the influence of a single parameter by redoing the calculations with 

varied stiffness data. It is not necessary to build ski prototypes. Further, investigated 

stiffness variations can be rather large. Although simulation lacks from incomplete 

modeling it is a valuable tool in investigating the effect of a single or a few 

parameters. 

In so called carved turns the ski tries to follow the circle given by the bended ski 

edge. Such turns cause little energy loss due to shearing. Only highly skilled skiers 

are able to achieve purely carved turns. The nowadays widely used carving skis 

notably support the carving technique. But, except for very hard snow conditions, skis 

always skid to some extent. As outlined in this paper, ski stiffness has an important 

impact on the amount of skidding. Proper modeling of the ski-snow interaction is 

essential for simulation of skiing. In several published studies elastic snow 

penetration laws are used (Lieu and Mote [9], Renshaw and Mote [19], Tada and 

Hirano [21], Kaps et al. [8], Casolo et al. [2], Nordt et al. [18], or Bruck et al. [1]). 

Elastic snow penetration forces produce a too small penetration depth for the rear 

part of the ski and consequently too small side forces. A hypoplastic force-

penetration relation as suggested by Mössner et al. [14] or Federolf [3] overcomes 

these problems since it causes almost the same penetration depth from the bindings 
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to the end of the ski. In our work we started by modeling a sledge on two skis carving 

a single turn with constant edge angle [14], then the model was improved to perform 

a sequence of turns [15], and recently the sledge was replaced by a Hanavan type 

model of the skier [6]. A hypoplastic constitutive equation was used for the 

penetration force and orthogonal metal cutting theory for the shearing force of the 

snow. The simulation model was validated in the case of a single turn with constant 

edge angle. First parameter studies were presented by Heinrich et al. [5] and 

Mössner et al. [16]. In this study we used the model of [15] to investigate the 

influence of ski stiffness on the trajectory of the skier performing a sequence of turns. 

METHOD 

Model of the Skier-Ski System 

Skier, skis, and bindings (Fig. 1) 

were assembled in the multibody 

system software LMS Virtual.Lab 

[12]. The skier was modeled as 

one rigid body with given mass 

and moment of inertia. It was 

connected by rotational joints with 

two weightless shanks with ski 

boot soles. Each boot sole was connected to the bindings by spherical joints. The 

binding-ski connections were a bracket joint for the toe piece and a translational joint 

for the heel piece. Each ski consisted of 18 rigid segments and a shovel segment. 

The segments were linked by revolute joints that allowed rotation around the 

transversal (bending) and the longitudinal (torsion) axes. The spring and damping 

constants for the springs in these joints were adapted to experiments on real skis. 

The position of the skier’s center of mass was fixed. For the rotational joints between 

the skier and the shanks driving constraints were implemented to steer the edge 

angles of the two skis during the simulation. 

Forces Applied to the Skier-Ski System 

Since the skis were modeled by rigid cuboids, the bottom surface of each ski was not 

smooth and the edge was even discontinuous. Therefore, we attached a 

differentiable surface to the bottoms of the ski segments, which is called running 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The skier-ski system in the LMS Virtual Lab software. 
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surface of the ski. Each point of the bottom rectangles of the multibody system model 

uniquely corresponds to one point of the running surface. Forces were calculated 

with respect to this surface and were supplied to the multibody system model via the 

corresponding point of the cuboid-shaped ski segment. For ski-snow contact forces, 

three types of forces were considered: 1) the penetration force normal to the snow 

surface, 2) the shear force transversal to the ski edge, and 3) the friction force in 

tangential direction. 

The reaction force normal to the snow surface was modeled by a hypoplastic 

force-penetration relation (see Fellin [4]). For the force calculations each segment 

was divided into 16 sub-segments. Further, the sub-segments were assumed to 

follow the bending and the torsion of the running surface. For the description of a 

point of the running surface of the ski we introduced the coordinates ξ and η for the 

longitudinal and the transversal directions of the ski, respectively. ξ starts from zero 

at the end to LS at the tip of the ski and η ranges from -w to +w from the right to the 

left ski edge. Let L be the length of a sub-segment, θ the edge angle, ε=e(ξ,±w) the 

penetration depth of the ski edge orthogonal to the snow surface. Then one gets for 

the volume of displaced snow 

(1)  .
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For the hypoplastic force-penetration relation one has to distinguish between loading 

and unloading of snow. For this we computed the maximum penetration depth of all 

frontal sub-segments of the ski 
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Let εmax be the value of maxe  for the ski edge. Further, let H be the snow hardness 

(Mössner et al. [13,17]). Then one gets for the snow penetration force 
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Since compacted snow shows hardly any elastic response the scaling function f 

drops very fast from 1 to 0. Setting f1=0.8 and f2=0.9 we use 
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Whenever all frontal sub-segments have a penetration depth less or equal to the 

current sub-segment, then snow is loaded. In the other case, when any frontal sub-

segment has a penetration depth (εmax) larger than the actual sub-segment, then 

snow is unloaded. 

The shear force was modeled according to orthogonal metal cutting theory 

(Shaw [20]). For metal cutting as well as for ice (Lieu and Mote [10]) it is known that 

shearing is independent of the shearing velocity. We denote the ultimate shear 

pressure of snow by p* (Mössner et al. [13,17]). When the lateral velocity vl is 

positive, i.e. directed outward, the reaction force for a sub-segment is given by the 

shear strength of the snow 

(5)  ,* LpFs ε=   for    vl > 0. 

Finally, snow friction Ff, drag Fd and weight Fw were modeled by 

(6)  ,)(,)( 10 vvFvF pf µµµµ +==   ,
2
1 2vACF dd ρ=  .mgFw =  

Simulation of Turns 

For the simulation of turns one has 

to solve the problem of keeping the 

balance of the skier. The resultant 

force FR acting on the skier is the 

sum of weight and centrifugal force. 

The lateral component is given by 

(7) βα cossin  
2

mg
r
mvFL −= , 

where α denotes the inclination of 

the slope and β the traverse angle, 

i.e. the angle between the skier’s 

velocity vector and the horizontal line of the slope. In the simulations a turn starts at 

45° and finishes at 135°. In the first half of the turn centrifugal force and weight act in 

opposite directions and in the second half both are directed downwards. The 

resultant force leads to a reaction force of the snow denoted by FSR. Its lateral 

component is given by 

Fig. 2:  View of the skier-ski system in the coronal
plane, i.e. the given plane is normal to the snow
surface and normal to the direction of movement.
FSR denotes the total snow reaction force, FSP and
FSS the total snow penetration and shear force
normal and parallel to the snow surface.  FR is the
resultant force acting on the skier, FL the lateral and
FN normal component with respect to the snow
surface. θr and θl are the edge angles of right and
left ski, χ inward lean angle of the skier, and ψ
angle of the total snow reaction force FSR. 
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FSS is limited by the shear strength of 

the snow. If FL exceeds FSS an 

accelerated side movement is initiated. 

This leads to skidding and for a large 

excess even to an overturn. To keep 

the balance, the skier has to choose 

his inward lean angle χ (see Fig. 2) approximately equal to the angle of the snow 

reaction force ψ. This can be achieved by carving without angulation. Then, the 

inward lean angle χ is equal to the complement χ=θ*+π/2 of the mean edge angle 

θ*=(θr+θl)/2. Obeying these principles a reference simulation was established. In the 

first turn the skier skied with an edge angle of 40 and 32° for the outer and inner ski, 

respectively (Fig. 3). Because of the higher speed of the skier the edge angles had to 

be increased in each consecutive turn by 10%. The skier’s center of mass was fixed 

in such a way that both skis were reasonably loaded and in longitudinal direction the 

center of mass was shifted 5 cm from the mounting point towards the tip of the skis. 

Input Data 

A carving ski (XT) with a projected ski length Ls of 1.65 m and a ski radius rs of 12.5 

m was implemented. The ski width w was taken from construction data. Bending 

stiffness EI and torsional stiffness GJ were determined in bending and torsion 

experiments. Finally, the spring constants used in the implementation were set to 

lEICB /=  and lGJCT /=  with l  the length of a ski segment.  

The simulations took place on a planar slope with an inclination α of 15°. Snow 

hardness H was set to 0.01 N/mm3, the ultimate shear pressure of snow p* to 0.025, 

0.030, and 0.036 MPa for small, medium and large shearing strength of snow, 

respectively, and the snow friction coefficient was set to µ(v) = 0.080+0.004 v with v 

the speed of the skier. This refers to quite soft snow. In the simulations the ski edge 

penetrated 5-10 mm into the snow. The mass of the skier including equipment m was 

73 kg and his drag area CdA was set to 0.6 m2. 

Fig. 3:  Driving constraints for the edge angles of 
the XT ski. Solid line edge angle of the right ski θr
[°] and dashed line edge angle of the left ski θl [°]. 
t [s] is the runtime in the simulation. 
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Fig. 4: Bending EI [Nm2] and torsional GJ [Nm2] 
stiffness used in the parameter studies. ξ [m] 
coordinate in longitudinal direction of the ski, 0 
refers to the ski end and LS to the titp of the ski. The 
thick line gives the value of the measurement on 
the real ski. Maximum variations are ±20% relative 
to the maximum of the stiffness data.  

Parameter Studies 

For the parameter studies the 

measured bending and torsional 

stiffness were varied from the 

reference simulation by ±20% 

(Fig. 4). To investigate the 

influence of snow conditions and 

edging of the skis the calculations 

were repeated for increased and 

decreased shearing strength of 

snow (±20%), and for increased 

edge angles (+10%). A sequence 

of turns of the skier was simulated 

for the reference and the varied 

data. For comparing the simula-

tions we calculated the projection 

of the center of mass of the 10th segment of the right ski normal to the snow surface. 

The time-position function of this point is called the trajectory of the skier. This point 

is near to the mounting point of the right ski. In the simulations a turn ranged from β = 

45-135°. For the calculation of the mean turn radius r we considered the part of the 

turn with traverse angles β ranging from 60-120°. The mean turn radius r is defined 

as the radius of the circle fitting that part of the skier’s trajectory in the least squares 

sense. The maximum deviation of the trajectory to the least squares circle was less 

than 13 cm. So in the main part of the turn the trajectory of the skier was quite close 

to an arc of a circle. The largest deviations occurred in skidded turns with the small 

shearing strength of snow.  

RESULTS 

Simulation of Turns 

For the implemented carving ski XT turns were computed by varying the snow 

conditions but using the measured ski stiffness. After a total runtime T of 13 s the 

skier finished 3-5 turns. His speed increased from 6 to 12 m/s. The skier went down 

the fall line of the slope approximately 110 m. In Fig. 5 the trajectories of the skier are 

given for the three values of the shearing strength of the snow. The markers in the 
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reference trajectory give the position for runtime 

differences of one second. The mean turn radius 

increased by 75% from 13.5-23.6 m, by 54% from 

12.2-18.8 m, and by 34% from 11.7-15.8 m for small, 

medium, and large shearing strengths of the snow, 

respectively (Table 1). For purely carved turns on a 

rigid plane the turn radius should be equal to 

θcosSrr =  (Howe [7] or Lind and Sanders [11]) and 

hence decrease from 10.1-9.0 m. At this hypothetical 

turn radius the lateral snow reaction forces cannot 

compensate the centrifugal force. But with the actual 

turn radius, given in Table 1, the radial forces were 

almost in equilibrium in the main part of the turn, i.e. 

for β from 60-120°. But at the end of the turns, 

because of the gravitational force, the difference 

grew up to 100-200 N. This force excess caused a 

radial acceleration of 1-3 m/s2 and an additional side 

movement of up to 1 m. A close look at the trajectories of the skier showed that the 

trajectory was circular in the main part of the turn, but not for the whole turn ranging 

from 45-135°. Especially at the end of the turns the skis considerably skidded. As a 

consequence the turn radius was noticeably increased. During the turns the skis 

were bent and twisted. For the medium shearing strength of snow the radius of the 

bending line (bending radius) decreased from 25.6-18.8 m and 43.6-33.6 m for the 

loaded and unloaded ski, respectively. The torsion twist was very small and varied 

from 0.8-2.1°. The corresponding radii of the bent ski edge were 9.8-8.9 m and 11.0-

10.5 m. The increased ski bending was caused by the speed up of the skier and 

consequently a higher centrifugal force. The observed radii for the bent ski edge 

correspond to those predicted by Howe. The actual turn radii are considerably larger 

because of skidding.  

Effect of Ski Stiffness 

In Table 1 the mean turn radii are collected for increased/decreased bending and 

torsional stiffness, three values of the shearing strength of the snow, and two edge 

angles. A larger stiffness caused smaller turn radii when compared to the situation 

Fig. 5: Trajectory of the skier for 
small (dark grey), medium 
(black), and large (light grey) 
shearing strength of the snow.  
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with the same snow conditions and edge angles. Larger stiffness reduced skidding. 

The effect increased for higher speed of the skier, i.e. from turn 1 to 3, and for 

decreased shearing strength of the snow. In the 3rd turn a 20% larger stiffness 

caused 8, 5, and 1% smaller turn radii for small, medium and large shearing strength 

of snow. A 20% smaller stiffness caused an opposite effect of the same magnitude. 

  
Because of the increased stiffness the bending radius was increased by 1-5 m and 

the torsion angle decreased by 0.2-0.5°.  The largest deviations occurred for soft 

snow or the 1st turn. The larger stiffness caused a larger bending radius of the ski 

and consequently a larger radius for the deflected ski edge.  The mean penetration 

depth of both skis was increased by 4-5% from soft to stiff skis. Since the shearing 

force depends linearly on the penetration depth (Eq 5) the side force increased by 4-

5%, too. Neither maximum penetration depth nor penetration depth of a single ski 

correlated with stiffness variation. 

In the simulations with the enlarged edge angles we got similar results. Because of 

the larger edge angles the skis penetrated deeper into the snow and so shearing was 

reduced. Therefore, all effects due to varied stiffness were smaller. The effect that 

larger edge angles reduce skidding is used in praxis: Skilled skiers enlarge edge 

angles. We further did simulations for varied bending stiffness and torsional stiffness 

of the measurement. In this case the turn radii shifted 0.1-0.2 m towards the turn radii 

for the simulations with the measured stiffness.  Because of the small overall torsion 

angle the effect of keeping the bending stiffness of the measurement and varying 

torsional stiffness was very small. 

Edge Angle normal 10 % enlarged 

Shear Strength of 
Snow small medium high small medim high 

High 
Ski Stiffness 

1st 
2nd 
3rd 

13.0 
15.6 
21.7 

12.1 
13.2 
17.7 

11.7 
11.8 
15.6 

12.3 
14.4 
19.7 

11.7 
12.2 
16.1 

11.3 
11.3 
14.5 

Ski Siffness of 
Measurement 

1st 
2nd 
3rd 

13.5 
16.7 
23.6 

12.2 
13.8 
18.8 

11.7 
12.0 
15.7 

12.7 
15.4 
21.5 

11.7 
12.8 
17.2 

11.3 
11.4 
14.2 

Small 
Ski Stiffness 

1st 
2nd 
3rd 

13.9 
18.2 
25.6 

12.4 
14.5 
19.8 

11.7 
12.4 
16.0 

13.1 
16.5 
23.2 

11.8 
13.4 
18.1 

11.3 
11.6 
14.6 

Table 1:  Mean turn radius r [m] for the first three turns in the simulation. Collected are the radii for two 
choices of the edge angle θ (Fig 3), for three types of snow (H = 0.010 N/mm3 and p* = 0.025, 0.030, and 
0.036 MPa), and for 3 values of ski stiffness (Fig. 4). 
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Discussion 

A sequence of ski turns could be simulated. With the prescribed function for the edge 

angle (Fig. 3) weight and centrifugal force were in quite good balance with the snow 

reaction forces. The positioning of the center of mass corresponded to skiing without 

angulation. For small speed (1st turn) or large ultimate shear pressure of snow the 

lateral forces were of the same magnitude as the shearing strength of snow and so 

carved turns occurred. On the other hand for large speed (3rd turn) or small ultimate 

shear pressure of snow the shearing strength of snow was considerably exceeded. 

Depending on the excess the turns got highly skidded. At the start of a turn small 

side forces are necessary, since the centrifugal force and the lateral component of 

the gravitational force have opposite directions. At the end of a turn both point in 

downhill direction. Therefore skidding mainly occurs at the end of the turn. An 

increased edge angle causes a geometrical reduction of the turn radius, due to the 

θcos  factor in Howe’s formula. Additionally, shearing is reduced due to the larger 

penetration depth of the ski edge. With the shearing strengths of the snow used in 

the simulations it was not possible to carve without any skidding. Nevertheless, for 

the large shearing strength the skier carved quite well. So, in the simulation of the 

skier’s trajectory the amount of skidding is a critical factor. Since the shear strength of 

snow linearly depends on the penetration depth of the skis, it is essential to use a 

suitable model to predict the penetration depth of the skis into the snow accurately. In 

a carved turn, the rear parts of the skis move in the track which the front parts dig 

into the snow. Compacted snow is not elastic - deformations remain. Such effects are 

considered by a hypoplastic constitutive equation. Therefore, for the snow a 

hypoplastic force-penetration relation was used obtaining a reasonable estimate of 

the penetration depth of the ski along its whole edge. 

In the parameter study the effect of ski stiffness on the turn radius was 

investigated. Except in one case (large shearing strength of snow, enlarged edge 

angles, 3rd turn) a larger stiffness caused smaller turn radii. As expected, bending 

and torsional deformations decrease with increased stiffness. Less bending causes a 

larger radius for the deflected ski edge. According to Howe’s theory this also should 

lead to a larger turn radius, but the opposite effect was observed.  The problem 

arises, since Howe just looks at the geometry of the deflected ski edge to predict the 

turn radius. But, because of skidding, the ski does not follow the circle of the 

deflected ski edge. To get the actual turn radius one has to look at the resultant 
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force, applied by the skier, and the lateral snow reaction forces, which determine 

skidding. For small speed or high shearing strength of the snow these forces are in 

balance and consequently a carved turn occurs. In these cases ski stiffness has little 

effect on the turn radius (Table 1). On the other hand when speed gets large or when 

shearing strength of the snow gets small then skidding occurs. The ski skids as much 

as is necessary to obtain equilibrium between centrifugal force and lateral snow 

reaction forces. In this case the produced lateral force depends on the penetration 

depth of the ski into the snow. In our case we got an increased mean penetration 

depth for larger stiffness, consequently larger side forces and smaller turn radii. 

Different behavior may occur when the ski is embedded differently in the snow (e.g. 

Heinrich et al. [5] or Mössner et al. [16]). The small effect of the torsional stiffness 

should not be underestimated. In our case the torsion twist was, because of the flat 

terrain, 1-2° only. On a rough snow surface or in hilly terrain the torsion twist and 

therefore torsional stiffness will certainly cause effects. 

Recently the model was improved by replacing the sledge with a Hanavan type 

skier (Heinrich et al. [6]). With this model it will be possible to get deeper insight in 

mechanical consequences of ski stiffness. We will get more realistic movements of 

the skier-ski system on the slope and the loading of the skis. Interesting questions 

are: How do skier movements interact with ski properties like stiffness and/or terrain 

properties. 
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