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Fast generation of nonuniform random numbers
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In this paper we develop grid�like techniques for fast generation of nonuniform random numbers�
The given method is applicable to �continuous� bounded densities and is demonstrated for normal
and exponential random number generation� Parameter selection is governed by algorithmic

e�ciency and computer oriented implementation� The proposed generators are compared to
several well known algorithms�
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�� INTRODUCTION

In simulation it is common practice to model data errors with random numbers
�RN�� Because of unknown distribution properties of the distribution of errors and
because of the central limit theorem researchers often use normal distributed RNs�
In many cases the mean is assumed to be zero and the standard deviation is known
from experimental experience� Therefore good and fast RN generators �RNG�
for normal distributed RNs are needed� The exponential distribution is used� for
instance� to model decaying processes� Both normal and exponential distributed
RNs are used to sample from other distributions�
There exist several algorithms for generating normal and exponential distributed

RNs� Simple implementations are given by inversion of the distribution function�
Let U and V be uniform distributed� then E � � log�U� is exponential distributed
and

p
�E sin���V � as well as

p
�E cos���V � are normal distributed RNs �Box�

Muller �	
�� The evaluation of the trigonometric functions can be avoided by using
the polar method ��
� Another well known method is motivated by the central limit

theorem� N �
P��

i�� Ui � 	�
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Brent ��
 uses sampling from exponential decaying distributions� Forsythe �
�
�
resp�� Ahrens and Dieter �
� �
 use a comparison method� Leva ���� ��
 uses the ratio
of uniforms method with special squeeze steps� Marsaglia et al� have introduced
a rejection algorithm ���
 and the �ziggurat� method ���
� The NAG library ��	

implements Brent�s algorithm for normal and inversion for exponential distributed
RNs and the LAPACK library ��� 
�
 Box�Mullers method only�
In the following we develop grid based techniques that are applicable for �con�

tinuous� bounded densities and apply these methods for normal and exponential
random sampling�

�� METHOD

��� Uniform distributed RNs� We need three kinds of random numbers 
�
uniform distributed random numbers �RN� in the range of ��� 
� �� random indices
�RI� from � to �n�
� and �� random signs �RS�� With F the distribution function�
F �distributed RNs are given by F���U�� Since F usually is a smooth function�
any nonrandomness or dependence in the sequence of uniform RNs is mapped to
nonuniform RNs� Therefore the underlying uniform generator has to be of high
quality� For e�ciency both the uniform generator and the inversion of F have to
be fast�
Since there exist no rigorous criteria� what a good generator should be� several

authors have developed their own testing procedures and hope to have the ultimate
test� Nevertheless each of these tests inspects some sort of nonrandomness� As
minimal requirement a modern generator needs to have a large period �� 
����
and has to pass common available testing suites �e�g� the DIEHARD package �
�
��
Furthermore tests� known to be stringent� should be passed �e�g� birthday test ��	
�
monkey tests ���
� lattice and spectral tests �
�� ��
� � � � �� Overviews on RNGs were
given by Marsaglia ��	
� L�Ecuyer ���
� and Hellekalek �
	
�
Because of �� and �� we use a generator that returns ���bit RNs� Generators

based on prime moduli are� although theoretically superior� of poor help� Since the
performance of the nonuniform generator linearly depends on that of the uniform
generator� we focus on the fast ones among the good ones� Candidates are the KISS�

generator �Marsaglia �
�
�� Marsaglias SWB�� generator �Marsaglia and Zaman
���� 
�
�� the combined Tausworthe generator taus�� �L�Ecuyer ���
�� the TGFSR�

generator tt��� �Matsumoto and Kurita ���� ��
�� and the MT� generator mt
����b
�Matsumoto and Nishimura ���
�� Especially the last one astonishes because of its
excellent theoretical characteristics�
We use a Fortran version of mt
����b� It�s period is ������ � 
� that is about


�	���� Never a computer will be able to exhaust a signi�cant part of the period�
The generator is equidistributed up to 	�� dimensions and performs well in the
tests of the DIEHARD package� The algorithm is well suited for implementation in
���bit arithmetic and results in a rather fast code� A parallel implementation may

�Keep It Simple Stupid�
�Subtract With Borrow�
�xn � xn��� � xn��� � borrow � ���� yn � �	�	� yn�� � carry � ���� un � xn � yn�
�Twisted Generalized Feedback Shift Register�
�Mersene Twister�
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be obtained by the suggestions of Masuda and Zimmermann �see sec� ��� of ��

��
In order to get a correct inversion of the distribution function� we use full precision

uniform RNs� that means all mantissa bits are uniformly distributed� According
to IEEE ��� standard a d�p�	 number consists of �� mantissa bits� a sign bit� and


 exponent bits�� Therefore� we need two RNs u and v for conversion to uniform
distribution�

U � �ur � v�r �
r � 


�
� r � ����� �
�

The lower 

 bits of u under�ow in conversion� These bits are reused for RSs
and RIs� Above this� operations on uniform RNs result in further bit losses� For
instance� IEEE ��� forces �� bits for transcendental math functions� such as the
logarithm� only� Analogously we can do the conversion for s�p� numbers� One
has �� bits for mantissa� one for sign� and � for exponent� The conversion reads
U � ru� �

� �
��� Reduction to �nite intervals� For simplicity we assume to have the

distribution f de�ned on the positive real axis x � �� Let p be the tail probability

p �

Z
�

e

f�x� dx � 
� F �e�� ���

Then the discrete mixture algorithm returns with probability p a random deviate
of the tail distribution �

p
f� x � e and else a deviate from the restricted distribution

�
��pf� x � ��� e
� In order to substitute the uniform RN� needed by the mixture

technique� by a RI� we restrict p to nt�
�n for a proper n � 
� �� � � � and small

nt � 
� �� � � � The root e of F �e� � 
 � nt�
�n can be computed by Brent�s zero

�nding technique ��
�
��� Method I� We rewrite the restricted distribution as cg�x� with c � � an arbi�
trary constant� This constant can be used� for instance� to simplify the evaluation
of g� The speci�c value of c is not needed for the algorithm� Next we divide the
x�axis in nx and the y�axis in ny intervals �see Fig� 
�� This division de�nes a grid
of ng �good� and nb �bad� rectangles� each of size �x � �y� �x � e

nx
and �y � M

ny
�

M � maxx�
��e� g�x�� The good rectangles are under the curve g and the bad ones
are those that intersect� Because of practical reasons we allow further nu unused
rectangles which can be thought as rectangles above the curve� We number the rect�
angles� �rst the bad followed by the good and the unused ones� by z and tabulize
the left lower corner �xz � yz��
RN sampling is done by rejection using as comparison function the envelope of

the rectangles� Getting a random point under the comparison function divides into
two steps� 
� selecting a rectangle randomly and �� selecting a random point in the
rectangle� The �rst step is done by choosing a RI z and the second by computing
uniform distributed U � V and setting �X�Y � � �xz � U�x� yz � V �y�� For good
rectangles the rejection condition Y � g�X� is false in any case� Therefore X can
be accepted immediately and Y is not needed� We arrive at

�s�p� single precision
 d�p� double precision
�The leading bit of the normalized mantissa is not stored�
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Fig� �� Grid discretization for method I

do

get a RI z between � and nb � ng � nu � nt � �
if �z � nb � ng�

get uniform distributed U � X � xz � U�x�
if �z �� nb� exit
get uniform distributed V � Y � yz � V �y
if �Y � g�X�� exit

else if �z � nb � ng � nu�
cycle

else

get a random deviate X from the tail density
end if

end do

The algorithm needs RIs z between � and nb�ng�nu�nt�
� For a fast method
we need �n � nb � ng � nu � nt and a large quick acceptance rate r � ng ��n�
If possible� there should be no unused rectangles� nu � �� and the tail probability
should be kept small� nt � 
� n large�
Normal distributed RNs� The free constants were selected by doing a computer
search for n � 	� �� �� and �� With n � 	� �� and � we reached rates r of ��	�� �����
and ���
� For n � � we did not �nd any reasonable values of nx and ny that
result in a high rate� Therefore we decided to implement the method with n � ��
We have nx � �� and ny � ��� which leads to ng � ��� good and nb � �	 bad
rectangles �see Fig� 
�� Furthermore we have nt � 
� In order to get a table of ��	
elements we need one unused rectangle� nu � 
� The portion of good rectangles
is �
�� The tail probability p is �

��	 and the end�point e is
p
� erf��� �����	 � �

�����	���
���	���
���� � � �
��� Method II� Although method I results in a quite fast algorithm� it is di�cult
to transfer to other distributions� Therefore we developed a second approach that
parts the rejection area in m� 
 equal areas �see Fig� ���
Let � � x� � x� � � � � � xm � e be the grid points along the x�axis and hz the

heights of the rectangles� The area of the z�th rectangle is Az � hz�xz�� � xz��
We denote by lz � minx�
xz�xz��� g�x� and uz � maxx�
xz�xz��� g�x� the lower and
upper bounds of the scaled distribution function g� For setup we have to �nd
numbers xz� hz with A� � � � � � Am�� that obey g�x� � hz and hz gets as small
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Fig� �� Grid discretization for method II

as possible� It is clear that hz � uz is the best choice� but hz � �uz� uz � �
 with a
small constant �� say ����
� will work too� Any constant less equal lz can be used
for quick acceptance steps�
For decaying densities� such as the halfnormal or the exponential density� one

has lz � g�xz��� and uz � g�xz�� The numbers xz are solutions to the optimization
problem� g�xz��xz���xz� � x�M� To apply the Newton technique �e�g� Deu�hard
�
�
� we had to implement the residuals and their Jacobian� Because of the sim�
plicity of the model we could supply analytical expressions for the Jacobian� With

the initial guess xz � 
z���e
m�� the damped Newton steps converge after some few

iterations to the solution� The optimization process is very stable and results in
residuals near the relative machine precision�
In the case of unimodal distributions the situation is similar� As long as xz�� �

mode one has lz � g�xz�� uz � g�xz���� for xz � mode � xz�� we have lz �
min�g�xz�� g�xz����� uz � g�mode� and for mode � xz lz � g�xz���� uz � g�xz��
The general case is tricky since the heights hz of the rectangles depend on the

locations of the grid points xz � In this case one can start with xz �

z���e
m�� � hz �M

and setup an optimization process for both xz and hz�
RN sampling is done in the same way as in method I� Selecting a random point

in the rejection area requires 
� random selection of one of the m � 
 rectangles
and �� getting a random point in the rectangle� The �rst step needs a RI z and
the second one uniform distributed U � V � Then �X�Y � � �xz�U�xz���xz�� hzV �
is a random point in the rejection area� A quick acceptance step can be done by
comparing Y with lz� Summarizing we have the algorithm

do

get a RI z between � and m� �
if �z � ��

get uniform distributed U � X � xz � U�xz�� � xz�
get uniform distributed V � Y � hzV

if �Y � lz� exit
if �Y � g�X�� exit

else

get a random deviate X from the tail density
end if

end do
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For good performance one selects �n � m� We have implemented the method for
the normal and exponential distribution with table sizes of 	� and ��	 elements�
��� Tail of the distribution� To complete the algorithm we have to give a
method for calculating RNs of the tail densities� Since this branch will be called
in mean in nt of �

n cases only� we do not need an optimal method� For the tail
of the exponential distribution one can use inversion� X � e� log�U� and for the
normal distribution rejection from the exponential density �Devroye �


�� Compute
exponential distributed E and F until E� � �e�F � then set X � e� E

e
� Marsaglia

���
 describes a rather general technique for rejection from exponential �f�x� �
ce�ax� and polynomial �f�x� � c�
 � bx��a� decaying distributions�
��� Further Improvements� There exist several improvements that speed up
the overall performance considerably�
Premultiplication of constants� Whenever products like cU with U � �ur �
v�r � r��

� have to be formed the products c r and c r��
� can be precalculated� In

case of the comparison c�U � c�� it is faster to compare ur � v with � c�
c�
� r��

� ��r�
Sometimes it is even su�cient to compare v with a slightly larger constant�
Squeezing can be used to avoid the evaluation of the rejection condition Y � g�X��
In each grid interval we sandwich g using a polynomial function� sz�x��� � g�x� �
sz�x� � � of degree k �see Fig� ��� For implementation we consider linear �k � 
�
and quadratic �k � �� polynomials only�
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Fig� �� Linear squeezing functions

For each grid interval �xz � xz� �z
 �method I� �z � �x method II� �z � xz���xz�
we compute coe�cients az�i� i � �� � � � k that minimize

min
az�i�i������k

Z xz��z

xz

�
g�x��

kX
i��

az�ix
i

��

dx� ���

Setting

Iz�i �

Z xz��z

xz

xig�x� dx ���

we have to solve the linear system�



i� j � 

��xz � �z�

i�j�� � xi�j��z �

�
i�j������k

�az�i�i������k � �Iz�i�i������k ���
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to get the coe�cients az�i for the polynomial approximations sz� Finally we use
Brents minimization technique ��
 to calculate

�z � max
x�
xz�xz��z �

jg�x� � sz�x�j �	�

and set � � maxz �z� Since this type of squeezing bounds is very sharp the rejection
condition Y � g�x� will be evaluated hardly anytime�

�� IMPLEMENTATION

��� Implementational details� For runtime comparison we obtained several
implementations from the net �GAMS ��
� netlib �
�
�� Using the original codes� it
is scarcely possible to judge the various algorithms against each other� Every RNG
uses its own uniform RNG� Some of them do a function call for every RN� some
are vectorized� few are even parallel� Last but not least most generators are given
in s�p� Almost all use reduced precision for uniform RNs�
Since we are coding in Fortran ����� at least some porting had to be done� There�

fore we decided to unify all algorithms� For portability and multiprecision coding we
introduced the module global containing the statement INTEGER� PARAMETER ��
kn � KIND ����d��� By changing ���d� to ��� and recompiling all sources one
obtains a s�p� version of our sources� Whenever appropriate we use code segments
like

IF �kn �� KIND ������ THEN

��� � code for s�p�

ELSE

��� � code for d�p�

end IF

Current compilers evaluate� during compilation� the if condition� notice it is a
constant expression� and eliminate the branch that is never executed� Therefore the
given coding technique does not result in any performance loss� However� one has
to take care not to introduce expressions� that will not be optimized away during
compilation�
Random bits are generated by the generator mt
����b of Matsumoto and Nishi�

mura ���
 and are saved in a pool uu of size nu � �	
� The generator may be initial�
ized either by default initialization� CALL set�rng�seed �� or by supplying a
single integer seed s� CALL set�rng�seed �seed�s� or by giving the whole seed
array seeds� CALL set�rng�seed �seed�vec�seeds�� The actual seed state
may be obtained by calling� CALL get�rng�seed �seeds��Whenever the pool is
exhausted a service routine is called to �ll the pool� CALL get�uni ��� For
conversion to uniform distribution we use the constants r� � ����kn

�	 and
r	 � �r� � �� � 	� Uniform RNs U� RIs z in the range of � to ���� and RSs
s are formed by

IF �kn �� KIND ������ THEN

IF �iu � nu��� CALL get	uni ��

u � uu�iu� 
 r� � ���	kn

z � IAND �uu�iu�
 ����� s � BTEST �uu�iu�
 ��

iu � iu � �

ELSE

IF �iu � nu��� CALL get	uni ��
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u � �uu�iu� 
 r� � uu�iu���� 
 r� � r�

z � IAND �uu�iu�
 ����� s � BTEST �uu�iu�
 ��

iu � iu � �

end IF

The typical code of a RNG looks like

SUBROUTINE rng �rn�

REAL �kind�kn�
 INTENT �out�
 DIMENSION ��� �� rn

INTEGER l
 ���� REAL �kind�kn� ���

DO l � �
 SIZE �rn�

��� � code for computing one RN

rn�l� � ���

end DO

end SUBROUTINE rng

��� Calling sample� We give a code fragment� that explains how to use the RNGs�
Whenever ellipsis occurs the user may insert his own code�

MODULE user	module

USE global
 ONLY � kn � kn � KIND ����d��

USE UniformMod
 ONLY � set	rng	seed
 get	rng	seed

USE NormalMod
 ONLY � normal	��	rn

USE ExponentialMod
 ONLY � exponential	��	rn

IMPLICIT NONE

���

CONTAINS

SUBROUTINE user	sub �e
 n
 mu
 sigma
 ����

REAL �kind�kn�
 INTENT �in� �� mu
 sigma

REAL �kind�kn�
 INTENT �out�
 DIMENSION ��� �� e
 n

INTEGER
 SAVE �� s � ���������

INTEGER
 SAVE
 DIMENSION ����� �� seeds

���

� default initialization of the RNG

CALL set	rng	seed ��

� initialize RNG with integer seed s

CALL set	rng	seed �s�

� get normal distributed random numbers

CALL normal	��	rn �n�

� convert to normal�mu
sigma�

n � n 
 sigma � mu

� get seed state of RNG

CALL get	rng	seed �seeds�

���

� initialize generator with seed vector

CALL set	rng	seed �seed	vec�seeds�

� get exponential distributed random numbers

CALL exponential	��	rn �e�

���

end SUBROUTINE user	sub

���

end MODULE user	module
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�� TESTING � RESULTS

��� Validation� In contrast to uniform RNs there exist few tests for assessing
the quality of a sequence of nonuniform RNs� A �rst class of tests computes the
empirical distribution function and tests it against the underlying distribution� This
can be done by chi�square or Kolmogorov�type tests �
�
� Using the Anderson�
Darling test statistic ���
 one has a good tool for investigating whether the tails
of the distribution are correct or not� On the other side these tests are far to
weak� They will reveal errors in implementation� but will not detect weakness of a
particular RNG� Another class of tests on RNs� the �serial� correlation tests �
�
�
investigate the independence of subsequent RNs� These tests are satis�ed by the
given RNGs�
Another idea is to transform the nonuniform RNs to uniform ones and supply

a testing package for uniform RNs� For exponential distributed E and F we have
E

E�F uniform distributed� and for normal distributed X and Y we have uniform

exp��X��Y �

� �� However� results based on this technique have to be taken with care�
as following example shows� The LAPACK generator ��� 
�
 for uniform RNs fails
some of the tests in the DIEHARD package but backtransformations of normal
distributed RNs pass all of the tests�
��� Runtime measurements� In order to get processor and compiler independent
information we did runtime measurements on following systems�

SGI �� SGI server� � processors� CPU R����� FPU R����� ��� MHz� �	 KB data��
�	 KB instr��� and � MB sec� cache� ��� MB memory� IRIX ���� NAGWare f��
ver� ���
����� option� �O�

SGI �� SGI workstation� CPU R����� FPU R����� ��� MHz� � KB data�� �
KB instr��� and � MB sec� cache� 	� MB memory� IRIX ���� NAGWare f��
ver� ���
����� option� �O� Nag Fortran Library ���� rel� ��

HP �� HP �������� workstation� PA����� �� MHz� ��	 KB data� and ��	 instr��
cache� �� MB memory� HP�UX A������� NAGWare f�� ver� ���
�	��� option� �O�

HP �� HP �������� workstation� PA����LC� �� MHz� ��	 KB data� and ��	 KB
instr��cache� �	 MB memory� HP�UX A������� NAGWare f�� ver� ���
�	��� option�
�O�

PC �� PC� Pentium� ��� MHz� � KB data�� � KB instr��� and ��� KB sec� cache�
�� MB memory� MS�DOS 	��� with Phar Lap DOS extender� ver� ���� Lahey lf���
ver� ����a� options� �o� �tp 
�o� performs interprocedural optimizations��

PC �� PC� Pentium� ��� MHz� � KB data�� � KB instr��� and ��� KB sec� cache�
�� MB memory� DOS 	��� with DBOS DOS extender� ver� ����� Salford ftn���
ver� ����� option� �optimise�

These machines range from mid range server over slow workstations to standard
PCs� Modern workstations are � to � times faster�
In praxis it is valuable to know the total cpu�time needed to produce a certain

amount of RNs� For that purpose we measure the cpu�time required for providing
the RNs in an user de�ned array� i�e� we add up time for generation� function calling
and� perhaps� copying� Since computing time for few RNs is negligible� we observe
runtimes for large samples only� With respect to function calling and caching it is
advisable to calculate RNs in blocks of medium size�
In Fig� � we show the performance of uniform random sampling with respect to

n� the number of RNs computed in a single call to the RNG�
The overhead for computing single RNs is considerable large� Additional comput�

ing times range form �� to 
	� percent� The situation is even worse for nonuniform
RN generation� The e�ect of function calling is observable up to vector length
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Fig� �� Performance of the d�p� version of the uniform RNG mt������ with respect to the vector
length� Shown is the number of RNs per �s versus log��n�� with n the number of RNs computed
per function call�

of about 	� elements� Remarkable is the di�erence for the two PC con�gurations
which use the same hardware but di�erent compiler technology� ftn�� is a port
of NAGWares UNIX compiler� which himself is organized as preprocessor to C� Its
performance relies on well tested �hosted� C technology� On the other side lf�� calls
himself to be a native compiler� This explains the low costs for function calling but
contradicts to the smaller overall e�ciency of the compiler�
On the other side� for large data sizes� the caches will over�ow and� hence� result

in a particular loss of performance �
�� � KB� 
�� ��	 KB� 
�� 
 MB�� This
e�ect amounts to approximately 
� percent� On the PCs the in�uence of the DOS
extenders probably exceeds the in�uence due to caching�
In Tab� 
 and � we collect runtime measurements for d�p� and s�p� RNGs� We give

absolute timings in �s per random deviate and relative timings� i�e� ratios of cpu�
time for nonuniform RN per uniform one� Absolute time measurements are mean
values of �� runs of a particular generator� In each run we computed 
��� vectors
of 
��� RNs� Standard statistics on the �� values indicate good repeatability of the
time measurements �s�d� � ���� �s��

�� DISCUSSION

Uniform RN generation needs� depending on machine� ���� to ���� �s for s�p��
resp�� ���� to 
��� �s for d�p� This is about twice as fast as common available
library routines� such as the LAPACK or the NAG generator� mt
���� is a high
quality generator with an extraordinary large period� On the other side both the
LAPACK� and the NAG� generator are LCGs��� These type of generators is known
to show a typical lattice structure �
	� ��
� The LAPACK generator additionally
fails some tests of the DIEHARD package� In Fortran one could use the intrinsic
RNG� We do not use this generator� since for any compiler one does not know

�un�� � aun � ���� a � ��������	������
	un�� � aun � ��	� a � �����
�
Linear Congruental Generator�
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anything about the quality of the intrinsic RNG� A further drawback is� that all
given compilers do not make a di�erence between s�p� and d�p� RNs�

The best algorithms for normal and exponential RN generation need few addi�
tional computing time with respect to uniform RN generation� Computing times
for normal RNs range from ��	� to 
��
 �s for s�p�� resp�� ���� � 
��� �s for d�p�
and for exponential RNs from ��	� to 
��
 �s for s�p�� resp�� ���� � 
��� �s for
d�p� Computing times do not di�er signi�cantly� since our method is uniformly
fast with respect to distribution function� Additional computing times range from
�� to �� percent and are somewhat larger for s�p� RN generation� The e�ciency
of our generator is markably better than most well known realizations� Library
solutions� such as NAG�s implementation� are considerable less e�cient� Beyond
that� recently published algorithms� such as Leva�s method� can�t stand with�

The only method that is competitive is Marsaglia and Tsang�s �ziggurat� method�
This method is a sort of grid technique� too� In contrast to our method it uses hor�
izontal stripes� Because of this the method is applicable to decaying distributions
and its symmetric counterparts� only� Random sampling with our method may
be implemented e�ciently for �continuous� bounded distributions� Setup is fast
for the class of unimodal distributions� The speed of the �ziggurat� and our meth�
ods is comparatively fast with a small pro�t of our �nd method on workstations�
Compared to Marsaglias original suggestion �	� element table� we got performance
improvements up to �� percent on HP workstations�

For further improvement of absolute computing times one has to search for a
faster uniform RNG� As long as one does not release quality properties such as
�independence� and �randomness� of the uniform bitstream� there is few hope to
get further improvements for the nonuniform part of the generator� E�ciency
improvements for the uniform generator may be obtained either by new algorithms
or by implementation� Coding the RNG in assembly language or even realizing it
by hardware usually results in high performance gains� On the other side coding
the generator in C does not result in any runtime improvement� The d�p� version
of mt
���� needs 
���	 �s in Fortran and 
���� �s in C� Finally one could switch
to a parallel computing environment �e�g� ��

�� This technique will get growing
attention soon� since dual Pentium PCs running under Windows NT are available
already yet�

The choice of the underlying uniform RNG makes no di�erence for of our method�
Relative timing results do not depend signi�cantly on the particular choice of the
uniform RNG� If one likes another generator he should use it� For e�ciency we
recommend to use a generator� that returns ���bit integers� During development we
tried out various uniform generators� From that experience we favor the generators
mentioned in sec� �� Finally we decided to use mt
���� because of its quality
�period� equidistribution properties� passes all tests of the DIEHARD battery� and
since its realization is comparatively fast� It is barely slower than the simple LCG�
The only drawback is the relative large size of the internal seed pool� If one likes
smaller seed pools� we recommend to use tt��� ���� ��
 or even simpler taus�� ���
�
Other generators� like RANLUX �
�� ��
 seem to be� at least at safe luxury levels�
to slow� or use prime moduli� such as L�Ecuyers combined generators �
�� �

� or
do not stand our quality demands� On a 	��bit processor it probably is su�cient
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to use a good 	� bit MWC�� generator� or even simpler a LCG�� generator�
From Fig� � we obtain� that RNs should be calculated in packages of at least 	�

numbers� Most applications need vectors of RNs� but there are situation where one
needs single numbers or even arrays of RNs� For that purpose it is convenient to
implement some interfaces that invokes the generator for the various shapes used
in praxis� One further could think to implement the generator as function and not
as subroutine� This improves readability of user code but causes allocation and
copying of a temporary array� Since the uniform RNG needs data within a save
statement� it is not possible to implement the generator as elemental routine�
The investigated processors are optimized for di�erent operations� The SGI�s

and HP�s use RISC processors� that means they use a small instruction set� They
are particularly good in array references and slow in complicated actions� such as
evaluation of transcendental functions� The P���� is optimized for �oating point
calculations and uses a special pipelining technique for loading elements of an array�
On the other hand the Pentium is optimized on integer� resp�� index calculations and
has a fast math�unit for transcendental functions� From that we expect� especially
for table methods� an increasing e�ciency from the PC to the SGI and to the HP
�compare Table 
�� In contrast the simple algorithms need several evaluations of
transcendental functions and� hence� are most e�cient on the PC and the HP�
Table methods need random access to arrays and therefore produce a lot of data

tra�c in the processor� These methods tend to �ll up the inner caching pools of
the processor� Whenever this occurs the performance of the generator brakes down�
This may be� perhaps� the reason for the slightly larger cpu�time of our �nd method
with the ��	 element table on the PC�
With some additional considerations the setup of method II can be implemented

independent of distribution for the class of monotoniously decaying and unimodal
densities� Up to now we have investigated the behavior of the technique in the
case of the exponential power distribution� a distribution family that contains ex�
ponential and normal distribution� On the SGI R���� the generator needs about
���	 s for initialization and ��� �s per RN� The initialization time does not matter�
it has to be done only once� The given technique results in an implementation
that is uniformly fast with respect to distribution parameter and� we claim� with
respect to distribution function� The setup is fast as long as the density and the
distribution function is computable� The generator is fast as long as the density
can be evaluated e�ciently� However this generalization needs further work and
investigations� It will be published elsewhere�
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Table �� Timing results for normal and exponential RNGs
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