
Preprint ver� ����� of ����	��	

Fast generation of nonuniform random numbers

Martin M�ossner

Dept� of Sport Science� University of Innsbruck

In this paper we develop grid�like techniques for fast generation of nonuniform random numbers�
The given method is applicable to �continuous� bounded densities and is demonstrated for normal
and exponential random number generation� Parameter selection is governed by algorithmic

e�ciency and computer oriented implementation� The proposed generators are compared to
several well known algorithms�

Categories and Subject Descriptors� AMS� ��C�	
 GAMS� L�a�� �Random Number Genera�

tion� Normal and Exponential Distribution

Additional Key Words and Phrases� Mathematics of Computing
 Probability and Statistics
 Ran�
dom Number Generation
 Normal and Exponential Distribution

�� INTRODUCTION

In simulation it is common practice to model data errors with random numbers
�RN�� Because of unknown distribution properties of the distribution of errors and
because of the central limit theorem researchers often use normal distributed RNs�
In many cases the mean is assumed to be zero and the standard deviation is known
from experimental experience� Therefore good and fast RN generators �RNG�
for normal distributed RNs are needed� The exponential distribution is used� for
instance� to model decaying processes� Both normal and exponential distributed
RNs are used to sample from other distributions�
There exist several algorithms for generating normal and exponential distributed

RNs� Simple implementations are given by inversion of the distribution function�
Let U and V be uniform distributed� then E � � log�U� is exponential distributed
and

p
�E sin���V � as well as

p
�E cos���V � are normal distributed RNs �Box�

Muller �	
�� The evaluation of the trigonometric functions can be avoided by using
the polar method ��
� Another well known method is motivated by the central limit

theorem� N �
P��

i�� Ui � 	�

Address� Dept� of Sport Science
 F�urstenweg ���
 University of Innsbruck
 A��	�	 Innsbruck

Austria� email� Martin�Moessner�uibk�ac�at� URI� http���sport��uibk�ac�at�isw�mm�

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or direct
commercial advantage and that copies show this notice on the �rst page or initial screen of a
display along with the full citation� Copyrights for components of this work owned by others
than the author must be honored� Abstracting with credit is permitted� To copy otherwise
 to
republish
 to post on servers
 to redistribute to lists
 or to use any component of this work in
other works
 requires prior speci�c permission and�or a fee� Permissions may be requested from
the author �see address above��

� � M� M�ossner ver� ����� of ���	
��

Brent ��
 uses sampling from exponential decaying distributions� Forsythe ��
�
resp�� Ahrens and Dieter �� �
 use a comparison method� Leva ���� ��
 uses the ratio
of uniforms method with special squeeze steps� Marsaglia et al� have introduced
a rejection algorithm ���
 and the �ziggurat� method ���
� The NAG library ��	

implements Brent�s algorithm for normal and inversion for exponential distributed
RNs and the LAPACK library ��� �
 Box�Mullers method only�
In the following we develop grid based techniques that are applicable for �con�

tinuous� bounded densities and apply these methods for normal and exponential
random sampling�

�� METHOD

��� Uniform distributed RNs� We need three kinds of random numbers �
uniform distributed random numbers �RN� in the range of ��� � �� random indices
�RI� from � to �n�� and �� random signs �RS�� With F the distribution function�
F �distributed RNs are given by F���U�� Since F usually is a smooth function�
any nonrandomness or dependence in the sequence of uniform RNs is mapped to
nonuniform RNs� Therefore the underlying uniform generator has to be of high
quality� For e�ciency both the uniform generator and the inversion of F have to
be fast�
Since there exist no rigorous criteria� what a good generator should be� several

authors have developed their own testing procedures and hope to have the ultimate
test� Nevertheless each of these tests inspects some sort of nonrandomness� As
minimal requirement a modern generator needs to have a large period �� ����
and has to pass common available testing suites �e�g� the DIEHARD package ��
��
Furthermore tests� known to be stringent� should be passed �e�g� birthday test ��	
�
monkey tests ���
� lattice and spectral tests ��� ��
� � � � �� Overviews on RNGs were
given by Marsaglia ��	
� L�Ecuyer ���
� and Hellekalek �	
�
Because of �� and �� we use a generator that returns ���bit RNs� Generators

based on prime moduli are� although theoretically superior� of poor help� Since the
performance of the nonuniform generator linearly depends on that of the uniform
generator� we focus on the fast ones among the good ones� Candidates are the KISS�

generator �Marsaglia ��
�� Marsaglias SWB�� generator �Marsaglia and Zaman
���� �
�� the combined Tausworthe generator taus�� �L�Ecuyer ���
�� the TGFSR�

generator tt��� �Matsumoto and Kurita ���� ��
�� and the MT� generator mt����b
�Matsumoto and Nishimura ���
�� Especially the last one astonishes because of its
excellent theoretical characteristics�
We use a Fortran version of mt����b� It�s period is ������ � � that is about

�	���� Never a computer will be able to exhaust a signi�cant part of the period�
The generator is equidistributed up to 	�� dimensions and performs well in the
tests of the DIEHARD package� The algorithm is well suited for implementation in
���bit arithmetic and results in a rather fast code� A parallel implementation may

�Keep It Simple Stupid�
�Subtract With Borrow�
�xn � xn��� � xn��� � borrow � ���� yn � �	�	� yn�� � carry � ���� un � xn � yn�
�Twisted Generalized Feedback Shift Register�
�Mersene Twister�

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � �

be obtained by the suggestions of Masuda and Zimmermann �see sec� ��� of ��
��
In order to get a correct inversion of the distribution function� we use full precision

uniform RNs� that means all mantissa bits are uniformly distributed� According
to IEEE ��� standard a d�p�	 number consists of �� mantissa bits� a sign bit� and
 exponent bits�� Therefore� we need two RNs u and v for conversion to uniform
distribution�

U � �ur � v�r �
r �

�
� r � ����� ��

The lower bits of u under�ow in conversion� These bits are reused for RSs
and RIs� Above this� operations on uniform RNs result in further bit losses� For
instance� IEEE ��� forces �� bits for transcendental math functions� such as the
logarithm� only� Analogously we can do the conversion for s�p� numbers� One
has �� bits for mantissa� one for sign� and � for exponent� The conversion reads
U � ru� �

� �
��� Reduction to �nite intervals� For simplicity we assume to have the

distribution f de�ned on the positive real axis x � �� Let p be the tail probability

p �

Z
�

e

f�x� dx � � F �e�� ���

Then the discrete mixture algorithm returns with probability p a random deviate
of the tail distribution �

p
f� x � e and else a deviate from the restricted distribution

�
��pf� x � ��� e
� In order to substitute the uniform RN� needed by the mixture

technique� by a RI� we restrict p to nt�
�n for a proper n � � �� � � � and small

nt � � �� � � � The root e of F �e� � � nt�
�n can be computed by Brent�s zero

�nding technique ��
�
��� Method I� We rewrite the restricted distribution as cg�x� with c � � an arbi�
trary constant� This constant can be used� for instance� to simplify the evaluation
of g� The speci�c value of c is not needed for the algorithm� Next we divide the
x�axis in nx and the y�axis in ny intervals �see Fig� �� This division de�nes a grid
of ng �good� and nb �bad� rectangles� each of size �x � �y� �x � e

nx
and �y � M

ny
�

M � maxx�
��e� g�x�� The good rectangles are under the curve g and the bad ones
are those that intersect� Because of practical reasons we allow further nu unused
rectangles which can be thought as rectangles above the curve� We number the rect�
angles� �rst the bad followed by the good and the unused ones� by z and tabulize
the left lower corner �xz � yz��
RN sampling is done by rejection using as comparison function the envelope of

the rectangles� Getting a random point under the comparison function divides into
two steps� � selecting a rectangle randomly and �� selecting a random point in the
rectangle� The �rst step is done by choosing a RI z and the second by computing
uniform distributed U � V and setting �X�Y � � �xz � U�x� yz � V �y�� For good
rectangles the rejection condition Y � g�X� is false in any case� Therefore X can
be accepted immediately and Y is not needed� We arrive at

�s�p� single precision
 d�p� double precision
�The leading bit of the normalized mantissa is not stored�

� � M� M�ossner ver� ����� of ���	
��

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig� �� Grid discretization for method I

do

get a RI z between � and nb � ng � nu � nt � �
if �z � nb � ng�

get uniform distributed U � X � xz � U�x�
if �z �� nb� exit
get uniform distributed V � Y � yz � V �y
if �Y � g�X�� exit

else if �z � nb � ng � nu�
cycle

else

get a random deviate X from the tail density
end if

end do

The algorithm needs RIs z between � and nb�ng�nu�nt�� For a fast method
we need �n � nb � ng � nu � nt and a large quick acceptance rate r � ng ��n�
If possible� there should be no unused rectangles� nu � �� and the tail probability
should be kept small� nt � � n large�
Normal distributed RNs� The free constants were selected by doing a computer
search for n � 	� �� �� and �� With n � 	� �� and � we reached rates r of ��	�� �����
and ���� For n � � we did not �nd any reasonable values of nx and ny that
result in a high rate� Therefore we decided to implement the method with n � ��
We have nx � �� and ny � ��� which leads to ng � ��� good and nb � �	 bad
rectangles �see Fig� �� Furthermore we have nt � � In order to get a table of ��	
elements we need one unused rectangle� nu � � The portion of good rectangles
is ��� The tail probability p is �

��	 and the end�point e is
p
� erf��� �����	 � �

�����	������	������� � � �
��� Method II� Although method I results in a quite fast algorithm� it is di�cult
to transfer to other distributions� Therefore we developed a second approach that
parts the rejection area in m� equal areas �see Fig� ���
Let � � x� � x� � � � � � xm � e be the grid points along the x�axis and hz the

heights of the rectangles� The area of the z�th rectangle is Az � hz�xz�� � xz��
We denote by lz � minx�
xz�xz��� g�x� and uz � maxx�
xz�xz��� g�x� the lower and
upper bounds of the scaled distribution function g� For setup we have to �nd
numbers xz� hz with A� � � � � � Am�� that obey g�x� � hz and hz gets as small

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � �

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig� �� Grid discretization for method II

as possible� It is clear that hz � uz is the best choice� but hz � �uz� uz � �
 with a
small constant �� say ����� will work too� Any constant less equal lz can be used
for quick acceptance steps�
For decaying densities� such as the halfnormal or the exponential density� one

has lz � g�xz��� and uz � g�xz�� The numbers xz are solutions to the optimization
problem� g�xz��xz���xz� � x�M� To apply the Newton technique �e�g� Deu�hard
��
� we had to implement the residuals and their Jacobian� Because of the sim�
plicity of the model we could supply analytical expressions for the Jacobian� With

the initial guess xz � z���e
m�� the damped Newton steps converge after some few

iterations to the solution� The optimization process is very stable and results in
residuals near the relative machine precision�
In the case of unimodal distributions the situation is similar� As long as xz�� �

mode one has lz � g�xz�� uz � g�xz���� for xz � mode � xz�� we have lz �
min�g�xz�� g�xz����� uz � g�mode� and for mode � xz lz � g�xz���� uz � g�xz��
The general case is tricky since the heights hz of the rectangles depend on the

locations of the grid points xz � In this case one can start with xz �
z���e
m�� � hz �M

and setup an optimization process for both xz and hz�
RN sampling is done in the same way as in method I� Selecting a random point

in the rejection area requires � random selection of one of the m � rectangles
and �� getting a random point in the rectangle� The �rst step needs a RI z and
the second one uniform distributed U � V � Then �X�Y � � �xz�U�xz���xz�� hzV �
is a random point in the rejection area� A quick acceptance step can be done by
comparing Y with lz� Summarizing we have the algorithm

do

get a RI z between � and m� �
if �z � ��

get uniform distributed U � X � xz � U�xz�� � xz�
get uniform distributed V � Y � hzV

if �Y � lz� exit
if �Y � g�X�� exit

else

get a random deviate X from the tail density
end if

end do

 � M� M�ossner ver� ����� of ���	
��

For good performance one selects �n � m� We have implemented the method for
the normal and exponential distribution with table sizes of 	� and ��	 elements�
��� Tail of the distribution� To complete the algorithm we have to give a
method for calculating RNs of the tail densities� Since this branch will be called
in mean in nt of �

n cases only� we do not need an optimal method� For the tail
of the exponential distribution one can use inversion� X � e� log�U� and for the
normal distribution rejection from the exponential density �Devroye �
�� Compute
exponential distributed E and F until E� � �e�F � then set X � e� E

e
� Marsaglia

���
 describes a rather general technique for rejection from exponential �f�x� �
ce�ax� and polynomial �f�x� � c� � bx��a� decaying distributions�
��� Further Improvements� There exist several improvements that speed up
the overall performance considerably�
Premultiplication of constants� Whenever products like cU with U � �ur �
v�r � r��

� have to be formed the products c r and c r��
� can be precalculated� In

case of the comparison c�U � c�� it is faster to compare ur � v with � c�
c�
� r��

� ��r�
Sometimes it is even su�cient to compare v with a slightly larger constant�
Squeezing can be used to avoid the evaluation of the rejection condition Y � g�X��
In each grid interval we sandwich g using a polynomial function� sz�x��� � g�x� �
sz�x� � � of degree k �see Fig� ��� For implementation we consider linear �k � �
and quadratic �k � �� polynomials only�

0 0.1 0.2 0.3 0.4 0.5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Fig� �� Linear squeezing functions

For each grid interval �xz � xz� �z
 �method I� �z � �x method II� �z � xz���xz�
we compute coe�cients az�i� i � �� � � � k that minimize

min
az�i�i������k

Z xz��z

xz

�
g�x��

kX
i��

az�ix
i

��

dx� ���

Setting

Iz�i �

Z xz��z

xz

xig�x� dx ���

we have to solve the linear system�

i� j �
��xz � �z�

i�j�� � xi�j��z �

�
i�j������k

�az�i�i������k � �Iz�i�i������k ���

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � �

to get the coe�cients az�i for the polynomial approximations sz� Finally we use
Brents minimization technique ��
 to calculate

�z � max
x�
xz�xz��z �

jg�x� � sz�x�j �	�

and set � � maxz �z� Since this type of squeezing bounds is very sharp the rejection
condition Y � g�x� will be evaluated hardly anytime�

�� IMPLEMENTATION

��� Implementational details� For runtime comparison we obtained several
implementations from the net �GAMS ��
� netlib ��
�� Using the original codes� it
is scarcely possible to judge the various algorithms against each other� Every RNG
uses its own uniform RNG� Some of them do a function call for every RN� some
are vectorized� few are even parallel� Last but not least most generators are given
in s�p� Almost all use reduced precision for uniform RNs�
Since we are coding in Fortran ����� at least some porting had to be done� There�

fore we decided to unify all algorithms� For portability and multiprecision coding we
introduced the module global containing the statement INTEGER� PARAMETER ��
kn � KIND ����d��� By changing ���d� to ��� and recompiling all sources one
obtains a s�p� version of our sources� Whenever appropriate we use code segments
like

IF �kn �� KIND ������ THEN

��� � code for s�p�

ELSE

��� � code for d�p�

end IF

Current compilers evaluate� during compilation� the if condition� notice it is a
constant expression� and eliminate the branch that is never executed� Therefore the
given coding technique does not result in any performance loss� However� one has
to take care not to introduce expressions� that will not be optimized away during
compilation�
Random bits are generated by the generator mt����b of Matsumoto and Nishi�

mura ���
 and are saved in a pool uu of size nu � �	
� The generator may be initial�
ized either by default initialization� CALL set�rng�seed �� or by supplying a
single integer seed s� CALL set�rng�seed �seed�s� or by giving the whole seed
array seeds� CALL set�rng�seed �seed�vec�seeds�� The actual seed state
may be obtained by calling� CALL get�rng�seed �seeds��Whenever the pool is
exhausted a service routine is called to �ll the pool� CALL get�uni ��� For
conversion to uniform distribution we use the constants r� � ����kn�	 and
r	 � �r� � �� � 	� Uniform RNs U� RIs z in the range of � to ���� and RSs
s are formed by

IF �kn �� KIND ������ THEN

IF �iu � nu��� CALL get	uni ��

u � uu�iu�
 r� � ���	kn

z � IAND �uu�iu� ����� s � BTEST �uu�iu� ��

iu � iu � �

ELSE

IF �iu � nu��� CALL get	uni ��

 � M� M�ossner ver� ����� of ���	
��

u � �uu�iu�
 r� � uu�iu����
 r� � r�

z � IAND �uu�iu� ����� s � BTEST �uu�iu� ��

iu � iu � �

end IF

The typical code of a RNG looks like

SUBROUTINE rng �rn�

REAL �kind�kn� INTENT �out� DIMENSION ��� �� rn

INTEGER l ���� REAL �kind�kn� ���

DO l � � SIZE �rn�

��� � code for computing one RN

rn�l� � ���

end DO

end SUBROUTINE rng

��� Calling sample� We give a code fragment� that explains how to use the RNGs�
Whenever ellipsis occurs the user may insert his own code�

MODULE user	module

USE global ONLY � kn � kn � KIND ����d��

USE UniformMod ONLY � set	rng	seed get	rng	seed

USE NormalMod ONLY � normal	��	rn

USE ExponentialMod ONLY � exponential	��	rn

IMPLICIT NONE

���

CONTAINS

SUBROUTINE user	sub �e n mu sigma ����

REAL �kind�kn� INTENT �in� �� mu sigma

REAL �kind�kn� INTENT �out� DIMENSION ��� �� e n

INTEGER SAVE �� s � ���������

INTEGER SAVE DIMENSION ����� �� seeds

���

� default initialization of the RNG

CALL set	rng	seed ��

� initialize RNG with integer seed s

CALL set	rng	seed �s�

� get normal distributed random numbers

CALL normal	��	rn �n�

� convert to normal�musigma�

n � n
 sigma � mu

� get seed state of RNG

CALL get	rng	seed �seeds�

���

� initialize generator with seed vector

CALL set	rng	seed �seed	vec�seeds�

� get exponential distributed random numbers

CALL exponential	��	rn �e�

���

end SUBROUTINE user	sub

���

end MODULE user	module

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � �

�� TESTING � RESULTS

��� Validation� In contrast to uniform RNs there exist few tests for assessing
the quality of a sequence of nonuniform RNs� A �rst class of tests computes the
empirical distribution function and tests it against the underlying distribution� This
can be done by chi�square or Kolmogorov�type tests ��
� Using the Anderson�
Darling test statistic ���
 one has a good tool for investigating whether the tails
of the distribution are correct or not� On the other side these tests are far to
weak� They will reveal errors in implementation� but will not detect weakness of a
particular RNG� Another class of tests on RNs� the �serial� correlation tests ��
�
investigate the independence of subsequent RNs� These tests are satis�ed by the
given RNGs�
Another idea is to transform the nonuniform RNs to uniform ones and supply

a testing package for uniform RNs� For exponential distributed E and F we have
E

E�F uniform distributed� and for normal distributed X and Y we have uniform

exp��X��Y �

� �� However� results based on this technique have to be taken with care�
as following example shows� The LAPACK generator ��� �
 for uniform RNs fails
some of the tests in the DIEHARD package but backtransformations of normal
distributed RNs pass all of the tests�
��� Runtime measurements� In order to get processor and compiler independent
information we did runtime measurements on following systems�

SGI �� SGI server� � processors� CPU R����� FPU R����� ��� MHz� �	 KB data��
�	 KB instr��� and � MB sec� cache� ��� MB memory� IRIX ���� NAGWare f��
ver� �������� option� �O�

SGI �� SGI workstation� CPU R����� FPU R����� ��� MHz� � KB data�� �
KB instr��� and � MB sec� cache� 	� MB memory� IRIX ���� NAGWare f��
ver� �������� option� �O� Nag Fortran Library ���� rel� ��

HP �� HP �������� workstation� PA����� �� MHz� ��	 KB data� and ��	 instr��
cache� �� MB memory� HP�UX A������� NAGWare f�� ver� ����	��� option� �O�

HP �� HP �������� workstation� PA����LC� �� MHz� ��	 KB data� and ��	 KB
instr��cache� �	 MB memory� HP�UX A������� NAGWare f�� ver� ����	��� option�
�O�

PC �� PC� Pentium� ��� MHz� � KB data�� � KB instr��� and ��� KB sec� cache�
�� MB memory� MS�DOS 	��� with Phar Lap DOS extender� ver� ���� Lahey lf���
ver� ����a� options� �o� �tp �o� performs interprocedural optimizations��

PC �� PC� Pentium� ��� MHz� � KB data�� � KB instr��� and ��� KB sec� cache�
�� MB memory� DOS 	��� with DBOS DOS extender� ver� ����� Salford ftn���
ver� ����� option� �optimise�

These machines range from mid range server over slow workstations to standard
PCs� Modern workstations are � to � times faster�
In praxis it is valuable to know the total cpu�time needed to produce a certain

amount of RNs� For that purpose we measure the cpu�time required for providing
the RNs in an user de�ned array� i�e� we add up time for generation� function calling
and� perhaps� copying� Since computing time for few RNs is negligible� we observe
runtimes for large samples only� With respect to function calling and caching it is
advisable to calculate RNs in blocks of medium size�
In Fig� � we show the performance of uniform random sampling with respect to

n� the number of RNs computed in a single call to the RNG�
The overhead for computing single RNs is considerable large� Additional comput�

ing times range form �� to 	� percent� The situation is even worse for nonuniform
RN generation� The e�ect of function calling is observable up to vector length

�	 � M� M�ossner ver� ����� of ���	
��

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

SGI R4400

SGI R4000

HP 9000 / 735

HP 9000 / 715

P120 / lf90

P120 / ftn90

Fig� �� Performance of the d�p� version of the uniform RNG mt������ with respect to the vector
length� Shown is the number of RNs per �s versus log��n�� with n the number of RNs computed
per function call�

of about 	� elements� Remarkable is the di�erence for the two PC con�gurations
which use the same hardware but di�erent compiler technology� ftn�� is a port
of NAGWares UNIX compiler� which himself is organized as preprocessor to C� Its
performance relies on well tested �hosted� C technology� On the other side lf�� calls
himself to be a native compiler� This explains the low costs for function calling but
contradicts to the smaller overall e�ciency of the compiler�
On the other side� for large data sizes� the caches will over�ow and� hence� result

in a particular loss of performance ��� � KB� �� ��	 KB� �� MB�� This
e�ect amounts to approximately � percent� On the PCs the in�uence of the DOS
extenders probably exceeds the in�uence due to caching�
In Tab� and � we collect runtime measurements for d�p� and s�p� RNGs� We give

absolute timings in �s per random deviate and relative timings� i�e� ratios of cpu�
time for nonuniform RN per uniform one� Absolute time measurements are mean
values of �� runs of a particular generator� In each run we computed ��� vectors
of ��� RNs� Standard statistics on the �� values indicate good repeatability of the
time measurements �s�d� � ���� �s��

�� DISCUSSION

Uniform RN generation needs� depending on machine� ���� to ���� �s for s�p��
resp�� ���� to ��� �s for d�p� This is about twice as fast as common available
library routines� such as the LAPACK or the NAG generator� mt���� is a high
quality generator with an extraordinary large period� On the other side both the
LAPACK� and the NAG� generator are LCGs��� These type of generators is known
to show a typical lattice structure �	� ��
� The LAPACK generator additionally
fails some tests of the DIEHARD package� In Fortran one could use the intrinsic
RNG� We do not use this generator� since for any compiler one does not know

�un�� � aun � ���� a � ��������	������
	un�� � aun � ��	� a � �����
�
Linear Congruental Generator�

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � ��

see moetab�tex

Table �� Runtimes for d�p� RNGs

�� � M� M�ossner ver� ����� of ���	
��

see moetab�tex

Table �� Runtimes for s�p� RNGs

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � ��

anything about the quality of the intrinsic RNG� A further drawback is� that all
given compilers do not make a di�erence between s�p� and d�p� RNs�

The best algorithms for normal and exponential RN generation need few addi�
tional computing time with respect to uniform RN generation� Computing times
for normal RNs range from ��	� to �� �s for s�p�� resp�� ���� � ��� �s for d�p�
and for exponential RNs from ��	� to �� �s for s�p�� resp�� ���� � ��� �s for
d�p� Computing times do not di�er signi�cantly� since our method is uniformly
fast with respect to distribution function� Additional computing times range from
�� to �� percent and are somewhat larger for s�p� RN generation� The e�ciency
of our generator is markably better than most well known realizations� Library
solutions� such as NAG�s implementation� are considerable less e�cient� Beyond
that� recently published algorithms� such as Leva�s method� can�t stand with�

The only method that is competitive is Marsaglia and Tsang�s �ziggurat� method�
This method is a sort of grid technique� too� In contrast to our method it uses hor�
izontal stripes� Because of this the method is applicable to decaying distributions
and its symmetric counterparts� only� Random sampling with our method may
be implemented e�ciently for �continuous� bounded distributions� Setup is fast
for the class of unimodal distributions� The speed of the �ziggurat� and our meth�
ods is comparatively fast with a small pro�t of our �nd method on workstations�
Compared to Marsaglias original suggestion �	� element table� we got performance
improvements up to �� percent on HP workstations�

For further improvement of absolute computing times one has to search for a
faster uniform RNG� As long as one does not release quality properties such as
�independence� and �randomness� of the uniform bitstream� there is few hope to
get further improvements for the nonuniform part of the generator� E�ciency
improvements for the uniform generator may be obtained either by new algorithms
or by implementation� Coding the RNG in assembly language or even realizing it
by hardware usually results in high performance gains� On the other side coding
the generator in C does not result in any runtime improvement� The d�p� version
of mt���� needs ���	 �s in Fortran and ���� �s in C� Finally one could switch
to a parallel computing environment �e�g� ��
�� This technique will get growing
attention soon� since dual Pentium PCs running under Windows NT are available
already yet�

The choice of the underlying uniform RNG makes no di�erence for of our method�
Relative timing results do not depend signi�cantly on the particular choice of the
uniform RNG� If one likes another generator he should use it� For e�ciency we
recommend to use a generator� that returns ���bit integers� During development we
tried out various uniform generators� From that experience we favor the generators
mentioned in sec� �� Finally we decided to use mt���� because of its quality
�period� equidistribution properties� passes all tests of the DIEHARD battery� and
since its realization is comparatively fast� It is barely slower than the simple LCG�
The only drawback is the relative large size of the internal seed pool� If one likes
smaller seed pools� we recommend to use tt��� ���� ��
 or even simpler taus�� ���
�
Other generators� like RANLUX ��� ��
 seem to be� at least at safe luxury levels�
to slow� or use prime moduli� such as L�Ecuyers combined generators ��� �
� or
do not stand our quality demands� On a 	��bit processor it probably is su�cient

�� � M� M�ossner ver� ����� of ���	
��

to use a good 	� bit MWC�� generator� or even simpler a LCG�� generator�
From Fig� � we obtain� that RNs should be calculated in packages of at least 	�

numbers� Most applications need vectors of RNs� but there are situation where one
needs single numbers or even arrays of RNs� For that purpose it is convenient to
implement some interfaces that invokes the generator for the various shapes used
in praxis� One further could think to implement the generator as function and not
as subroutine� This improves readability of user code but causes allocation and
copying of a temporary array� Since the uniform RNG needs data within a save
statement� it is not possible to implement the generator as elemental routine�
The investigated processors are optimized for di�erent operations� The SGI�s

and HP�s use RISC processors� that means they use a small instruction set� They
are particularly good in array references and slow in complicated actions� such as
evaluation of transcendental functions� The P���� is optimized for �oating point
calculations and uses a special pipelining technique for loading elements of an array�
On the other hand the Pentium is optimized on integer� resp�� index calculations and
has a fast math�unit for transcendental functions� From that we expect� especially
for table methods� an increasing e�ciency from the PC to the SGI and to the HP
�compare Table �� In contrast the simple algorithms need several evaluations of
transcendental functions and� hence� are most e�cient on the PC and the HP�
Table methods need random access to arrays and therefore produce a lot of data

tra�c in the processor� These methods tend to �ll up the inner caching pools of
the processor� Whenever this occurs the performance of the generator brakes down�
This may be� perhaps� the reason for the slightly larger cpu�time of our �nd method
with the ��	 element table on the PC�
With some additional considerations the setup of method II can be implemented

independent of distribution for the class of monotoniously decaying and unimodal
densities� Up to now we have investigated the behavior of the technique in the
case of the exponential power distribution� a distribution family that contains ex�
ponential and normal distribution� On the SGI R���� the generator needs about
���	 s for initialization and ��� �s per RN� The initialization time does not matter�
it has to be done only once� The given technique results in an implementation
that is uniformly fast with respect to distribution parameter and� we claim� with
respect to distribution function� The setup is fast as long as the density and the
distribution function is computable� The generator is fast as long as the density
can be evaluated e�ciently� However this generalization needs further work and
investigations� It will be published elsewhere�

	� ACKNOWLEDGEMENTS

We thank the Institute of Astronomy� the Faculty of engineering and the local com�
puting site for providing the various machines for testing� Furthermore we thank
P� Kaps for the help in preparation of the paper and P� Hellekalek for comments
on the paper�

��Multiply With Carry�
��Linear Congruental Generator�

Fast generation of nonuniform random numbers ver� ����� of ���	
��
 � ��

REFERENCES

�� J�H� Ahrens and U� Dieter
 Computer methods for sampling from the exponential and normal
distributions
 Communications of the ACM �� ������
 ��������

�� J�H� Ahrens
 K�D� Kohrt
 and U� Dieter
 Algorithm ���� Sampling from gamma and Poisson
distributions
 ACM Transactions on Mathematical Software � ������
 ��������

�� E� Anderson
 Z� Bai
 C� Bischof
 J�W� Demmel
 J�J� Dongarra
 J� du Croz
 A� Greenbaum

S� Hammarling
 A� McKenney
 S� Ostrouchov
 and D� Sorensen
 LAPACK Users� Guide

Society for Industrial and Applied Mathematics �SIAM�
 Philadelphia
 �����

�� J�R� Bell
 Algorithm ���� Normal random deviates
 Communications of the ACM �� ������

����

�� R�F� Boisvert
 S�E� Howe
 and D�K� Kahaner
 GAMS� A framework for the management of
scienti�c software
 ACM Transactions on Mathematical Software ������
 ��������

�� G�E�P� Box and M�E� Muller
 A note on the generation of random normal deviates
 Annals
of Mathematical Statistics �� ������
 ��	�����

�� R�P� Brent
 An algorithm with guaranteed convergence for �nding a zero of a function
 The
Computer Journal �� ������
 ��������

�� R�P� Brent
 Algorithms for minimization without derivatives
 Prentice Hall International

Inc�
 Englewood Cli�s
 New Jersey
 �����

�� R�P� Brent
 Algorithm ���� A Gaussian pseudo�random number generator
 Communications
of the ACM �� ������
 �	���	��

��	 P� Deu�hard
 A Modi�ed Newton Method for the Solution of Ill�Conditioned Systems of
Nonlinear Equations with Applications to Multiple Shooting	
 Numerische Mathematik
�� ������
 ��������

��� L� Devroye
 Non�uniform random variate generation
 Springer
 New York
 �����

��� DIEHARD
 A battery of tests of randomness
 available by anonymous ftp from stat�fsu�edu
directory �pup�diehard�

��� J�J� Dongarra and E� Grosse
 Distribution of mathematical software via electronic mail

Communications of the ACM �	 ������
 �	���	��

��� G�S� Fishman
 Multiplicative congruental random number generators with modulus �� � An
exhaustive analysis for � � �� and a partial analysis for � � ��
 Mathematics of Com�
putation �� ����	�
 ��������

��� G�E� Forsythe
 Von Neumann�s comparison method for random sampling from the normal
and other distributions
 Mathematics of Computation �
 ������
 ��������

��� P� Hellekalek
 Good random number generators are
not so� easy to �nd
 Proceedings of the
�nd IMACS Symposium on Mathematical Modelling �Vienna�
 ����
 ����

��� F� James
 RANLUX� A Fortran implementation of the high�quality pseudo�random number
generator of L�uscher
 Computer Physics Communications �� ������
 ��������

��� D�E� Knuth
 The art of computer programming Volume �� Seminumerical algorithms
 �nd
ed�
 Addison�Wesley Publishing Company
 Reading
 Massachusetts
 �����

��� P� L�Ecuyer
 Combined multiple�recursive random number generators
 Operations Research
�� ������
 ��������

��	 P� L�Ecuyer
 Maximally equidistributed combined Tausworthe generators
 Mathematics of
Computation
� ������
 �	������

��� P� L�Ecuyer
 A random number generator based on combination of four LCG�s
 Mathematics
of Computers in Simulation �� ������
 ���

��� P� L�Ecuyer
 Random number generation
 In� Handbook on simulation �J� Banks
 ed��
 John
Wiley � Sons
 New York
 �to appear
 ������

��� J�L� Leva
 A fast normal random number generator
 ACM Transactions on Mathematical
Software �� ������
 ��������

��� J�L� Leva
 Algorithm ���� A normal random number generator
 ACM Transactions on Math�
ematical Software �� ������
 ��������

��� M� L�uscher
 A portable high�quality random number generator for lattice �eld theory simu�
lations
 Computer Physics Communications �� ������
 �		���	�

�
 � M� M�ossner ver� ����� of ���	
��

��� G� Marsaglia �ed��
 A current view of random number generators
 Elsevier
 Computer Science

and Statistics� ��th Symposium on the Interface
 �����

��� G� Marsaglia and T�A� Bray
 A convenient method for generating normal variables
 SIAM
Review
 ������
 ��	�����

��� G� Marsaglia and W�W� Tsang
 A fast	 easily implemented method for sampling from decreas�
ing or symmetric unimodal density functions
 SIAM Journal on Scienti�c and Statistical
Computing � ������
 ��������

��� G� Marsaglia and A� Zaman
 A new class of random number generators
 Annals of Applied
Probability � ������
 ������	�

��	 G� Marsaglia and A� Zaman
 Monkey tests for random number generators
 Computers and
Mathematics with Applications �
 ������
 ���	�

��� N� Masuda and F� Zimmermann
 PRNGlib� A parallel random number generator li�
brary
 Technical Report TR����	�
 Swiss Center for Scienti�c Computing �CSCS�SCSC�

Manno
 Switzerland
 ����
 URI� http���www�cscs�ch�O�cial�PubTR���html�

��� M� Matsumoto and Y� Kurita
 Twisted GFSR generators
 ACM Transactions on Modeling
and Computer Simulation � ������
 ��������

��� M� Matsumoto and Y� Kurita
 Twisted GFSR generators II
 ACM Transactions on Modeling
and Computer Simulation � ������
 ��������

��� M� Matsumoto and T� Nishimura
 A ����dimensionally equidistributed uniform pseudoran�
dom number generator
 ACM Transactions on Modeling and Computer Simulation �����

submitted��

��� M� M�ossner
 J� P�eiderer
 N� Netzer
 AD dept� Astro

��� Numerical Algorithms Group �NAG�
 NAG Fortran �� library	 Release �
 NAG Ltd�
 Oxford

England
 UK
 �����

Fast generation of random numbers ��

g
en
er
a
to
r

S
G
I
�

S
G
I
�

H
P
�

H
P
�

P
C
�

P
C
�

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

u
n
if
o
rm
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

m
t�
�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
	

�
��

�
��
�

L
A
P
A
C
K

�
��
�

�
��
�
�

�
��
�
	

�
��
�
�

�
�	

�

�
��
�

N
A
G

�
�

�
�

n
o
rm
a
l
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

B
ox
�M
u
ll
er

�
��
�

�
��
�

��
	

�
��
�

�
��
�

�
�

�

�
�	
�

�
�

�

�
��

�
��
	

�
��
	

�
��
�

p
o
la
r
m
et
h
o
d

�
��
�

�
��
�

�
��
�

�
��
�

�
��
	

�
�	
�

�
�	
�

�
�	
�

�
�	

�
��
�

�
��
�

�
��
�

su
m
o
f
�
�
u
n
if
o
rm
s

	
��
�

�
�	

�
�
��
	

�
��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��

�
�
��
�

�
�
��
�

B
re
n
t

�
��
�

�
�	
�

�
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
�

�

�
��
�

�
��

A
h
re
n
s�
D
ie
te
r

�
��
�

�
��

�
��
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��
�

�
�	

�
��
�

L
ev
a

�
��

�
��
�

�
��
�

�
��

�
��
�

�
�

�

�
�	
�

�
�

�

�
��
�

�
��
�

�
��
�

��
	

M
a
rs
a
g
li
a
�B
ra
y

�
�

�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
�

�

M
a
rs
a
g
li
a
T
sa
n
g
	
�
el
�t
��

�
��

�
�

	

�
��
	

�
��
	

�
��
�

�
��
�

�
�

�

�
��
	

�
��
�

�
��
�

�
�

�

�
�

M
a
rs
a
g
li
a
T
sa
n
g
�

	
el
�t
��

�
��
�

�
�

�

�
��
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
	

M
�o
ss
n
er
I
l
in
�
sq
��

�
��
�

�
�

�

�
��
�

�
�

�

�
��
�

�
��
�

�
��
�

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
�

M
�o
ss
n
er
I
q
u
a
d
�
sq
��

�
��
�

�
��
	

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��
�

�
�

	

�
��

�
�

�

�
�	
�

M
�o
ss
n
er
II
	
�
el
�t
��

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
�

�

�
��
�

�
��
�

�
�

�

M
�o
ss
n
er
II
�

	
el
�t
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��

�
��
�

�
�

�

�
��
�

�
��
�

�
��
�

L
A
P
A
C
K

	
��
�

�
��
�

�
�
��
�

�
�	
�

�
��
�

�
��
�

��
�

�
��
�

��
�

�
��
�

	
��
�

�
��
�

N
A
G

�
�	
�

�
��
	 ex

p
o
n
en
ti
a
l
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

in
v
er
si
o
n

�
��
�

�
�

�

�
��
�

�
��
�

�
�	

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

u
n
if
o
rm
sp
a
ce
s

�
�	
�

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

A
h
re
n
s�
D
ie
te
r

�
��
�

�
��
�

�
��
�

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��

�
��
�

�
�

�

M
a
rs
a
g
li
a
T
sa
n
g
	
�
el
�t
��

�
��

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��
�

�
��
	

M
a
rs
a
g
li
a
T
sa
n
g
�

	
el
�t
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��

�
��
�

M
�o
ss
n
er
II
	
�
el
�t
��

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��

M
�o
ss
n
er
II
�

	
el
�t
��

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��

�
��

�
��
�

�
��
�

N
A
G

�
��
	

�
��
�

Table �� Timing results for normal and exponential RNGs

g
en
er
a
to
r

S
G
I
�

S
G
I
�

H
P
�

H
P
�

P
C
�

P
C
�

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

u
n
if
o
rm
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

m
t�
�
�
�
�

�
�

�
	

�
��
�
�

�
�

�
�

�
��
�
�

�
x
�

�
x
�
�

�
x
�
�

�
x
�
�

n
o
rm
a
l
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

B
ox
�M
u
ll
er

�
�

�

��
�

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
�

�
��
�

�
x
�

�
x
�
	

�
x
�
	

�
x
�
�

p
o
la
r
m
et
h
o
d

�
��
�

�
�

�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
x
	

�
x
�
�

�
x
�
�

�
x
�
�

su
m
o
f
�
�
u
n
if
o
rm
s

�
�	
�

�
��
�

��
�

�
��
�

�
��
�

�
�	
�

��
�

�
��
�

�
�
x
�
�

�
�
x
�

�
�
x
�
�

�
�
x
�
�

B
re
n
t

�
�

�
��
	

�
��
	

�
��
�

�
��
	

�
�

�

�
��
�

�
�

�

�
x
�
�

�
x

�

�
x
�
�

�
x
�

A
h
re
n
s�
D
ie
te
r

�
��
�

�
��
	

�
��
�

�
�

�

�
��
�

�
��
�

�
�

�

�
��
�

�
x
�
�

�
x
�
�

�
x
	

�
x
�
�

L
ev
a

�
��
	

�
��
	

�
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
	

�
x
�
�

�
x
�
�

�
x
�
�

x
�
	

M
a
rs
a
g
li
a
�B
ra
y

�
�

�

�
��
�

�
��
�

�
��
�

�
��

�
��
�

�
��
�

�
�

�

�
x
�
�

�
x
�
�

�
x
�
�

�
x

�

M
a
rs
a
g
li
a
T
sa
n
g
	
�
el
�t
��

�
��
�

�
��
�

�
��
�

�
�	
�

�
��
�

�
�

�

�
��
�

�
�

	

�
x
�
�

�
x
�
�

�
x

�

�
x

M
a
rs
a
g
li
a
T
sa
n
g
�

	
el
�t
��

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
	

�
x
�
�

�
x
�
�

�
x
�
�

�
x
�
	

M
�o
ss
n
er
I
l
in
�
sq
��

�
��
�

�
��
�

�
��
	

�
�	

�
��
	

�
��
�

�
��
�

�
��
�

�
x
	
�

�
x
�
�

�
x
�
�

�
x
�
�

M
�o
ss
n
er
I
q
u
a
d
�
sq
��

�
��
�

�
�	
�

�
��
	

�
�

�

�
x
�
�

�
��
�

�
��
�

�
��
�

�
x

	

�
x
�

�
x

�

�
x
	
�

M
�o
ss
n
er
II
	
�
el
�t
��

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
x

�

�
x
�
�

�
x
�
�

�
x

�

M
�o
ss
n
er
II
�

	
el
�t
��

�
��

�
��
�

�
��
�

�
��
�

�
�	
�

�
��

�
��
�

�
��
�

�
x

�

�
x
�
�

�
x
�
�

�
x
�
�

ex
p
o
n
en
ti
a
l
d
is
tr
ib
u
te
d
ra
n
d
o
m
n
u
m
b
er
s

in
v
er
si
o
n

�
�	
	

�
��
�

�
�

�

�
��
�

�
��
�

�
��
�

�
�	
�

�
��
�

�
x
�
�

�
x
�
�

�
x
�
�

�
x
�
�

u
n
if
o
rm
sp
a
ce
s

�
��
�

�
��
�

�
��
�

�
��
�

�
��

�
��
�

�
��

�
��
�

�
x
�
�

�
x
�
�

�
x
�
�

�
x
�
�

A
h
re
n
s�
D
ie
te
r

�
��
�

�
�

�

�
��

�
��
�

�
��
�

�
��
�

�
�

�

�
��

�
x
�
�

�
x
�

�
x
�
�

�
x

�

M
a
rs
a
g
li
a
T
sa
n
g
	
�
el
�t
��

�
��
�

�
��
�

�
��

�
�	
�

�
��
�

�
��
�

�
��
	

�
�

�

�
x
�
�

�
x
�
�

�
x
�
�

�
x
�
	

M
a
rs
a
g
li
a
T
sa
n
g
�

	
el
�t
��

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
	

�
��
�

�
��
�

�
��
�

�
x
�
�

�
x
�
�

�
x
�

�
x
�
�

M
�o
ss
n
er
II
	
�
el
�t
��

�
��
	

�
�

�

�
��
�

�
��
�

�
�	
�

�
��

�
��
�

�
��
	

�
x
�
�

�
x
�
�

�
x
�
�

�
x
�

M
�o
ss
n
er
II
�

	
el
�t
��

�
��
�

�
��
�

�
��
�

�
��
	

�
x
	

�
x
�
�

�
��

�
��
�

�
x
�

�
x
�

�
x
�
�

�
x
�
�

Table �� Timing results for normal and exponential RNGs

��

