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Abstract: The coefficient of friction of skis on snow appears to be influenced by
several factors, for example, speed, contact area, snow type and ski properties. The
purpose of this study was to determine simultaneously the coefficient of kinetic
friction and the drag area in straight running on a slope with varying inclination and
in traversing on an inclined plane. Experimental measurements were taken using
photo cells for straight running and by film analysis for traversing. The skier was
modeled as a particle that moves on the surface of a slope. The equation of motion
with the algebraic constraints of the track of the skier represents a differential-
algebraic equation which was solved numerically. The coefficient of friction and
the drag area were calculated by minimizing the sum of the square errors between
computed and measured time data.

For straight running, the computed coefficient of friction and the drag area were
in the same range as obtained by other methods. For traversing, the coefficient
of friction could be determined but not the drag area. The skier traversed in an
upright position at a speed from 0 to 17 m/s. In this range of velocity the drag area
is not constant. It corresponds to critical Reynolds numbers where a sudden drop
in the drag coefficient occurs if the body segments are approximated by cylinders.

The results indicate that in both cases the applied method is adequate for deter-
mining simultaneously the coefficient of kinetic friction and the drag area if these
parameters are independent of the velocity.
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Nomenclature

A projected area
Ac contact area
α slope inclination
β traverse angle between fall line and direction of travel
Cd drag coefficient
d thickness of water film
D diameter of a cylinder
η coefficient of viscosity
Fc friction force due to snow compaction, ploughing, etc.
Fd, Ff drag and friction force
Fg gravitational force
Fa,Fr vector of applied and reaction forces
k1, kn air friction constant, see Eq 6, 7
l height of a skater
L characteristic length in Re
m mass
µ coefficient of friction
µ1 velocity dependent part of coefficient of friction
N normal force
ν kinematic viscosity
Re Reynolds number
ρ density
s arc length of path of skier
si arc length at time ti
ti measured time at ith photocell or for ith picture
θ0 knee angle
θ1 angle between trunk and horizontal line
v velocity
V characteristic velocity in Re
xi, yi measured coordinates of skier at ith photocell
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1 Introduction

When a ski glides over snow, the snow exerts forces on the ski. The ratio of the
tangential force and the normal force is called the coefficient of kinetic friction. It is
influenced by several factors, e.g. speed, contact area, loading, temperature, snow
type (snow temperature, hardness, liquid-water content, texture) and ski properties
(stiffness, thermal conductivity, base material, base roughness). The air resistance
comprises all interactions between skier and air. The component parallel to the
direction of motion is called drag, the normal component lift. The drag coefficient
seems to be nearly constant for high velocities whereas it decreases for low veloci-
ties (Gorlin et al. [12]). In laboratory investigations, the coefficient of friction was
commonly determined by means of friction meters consisting of rotational devices
with built-in force transducers (e.g. Kuroiwa [19]). In skiing investigations, mea-
surements were obtained in straight running using the towing method (e.g. Habel
[13]) or the runout method (e.g. Habel [13], Leino and Spring [20]). The drag area
is determined usually in wind channels (Gorlin et al. [12]). Erkkilä et al. [9] used
roller-skis. The purpose of this study was to present a method to determine the
coefficient of kinetic friction and the drag area simultaneously in straight running
on a slope with varying inclination and in traversing on an inclined plane. The
paper starts with a review on results for the kinetic friction and the drag area. The
experimental work was performed in the surroundings of Seefeld, Austria. Then the
equations of motion are formulated as differential-algebraic equations and results
are presented for schussing in the fall line and for traversing.

2 Data collection

The straight running experiments were conducted on a 342 m long run with an
altitude difference of 73 m (Fig 1). Nine photocells were installed about 25 cm above
the snow surface and distributed along the run. The location of the photocells was
determined by geodetic surveying using a theodolite. Time data of a skier gliding
straight down the fall line in a tucked position were collected from all photocells
(see Nachbauer et al. [26]).

In traversing, the path of the downhill ski boot was determined by film analysis.
The length of the run was about 25 m, located on an 18◦ inclined plane (Fig 2).
The traversing angle was about 40◦ to the horizontal. The sides of the traverse
were marked by ropes equipped with black-painted tennis balls that defined a 1 m
reference marker system. The skier was filmed with a 16 mm high-speed camera
located laterally to the plane of motion of the skier. The width of the film field
ranged from 4 to 6 m. The film speed was set at 100 frames per second. Ball-shaped
markers were placed on the toepiece of the binding. The skier had to traverse
in a straight line in an upright position. Side slipping was to be avoided. The
coordinates of the marker were determined using the DLT method (Kaps et al. [18],
Mössner et al. [24]). Barometric pressure and air temperature were measured in
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Fig. 1: Straight running experiments.

Fig. 2: Traversing experiments.
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order to calculate the air density. The mass of the skier including his equipment
was measured as well (see Haug [16]).

3 Kinetic friction

The friction between ski and snow is relatively small because the snow melts at
the contact surface of the ski due to the heat produced by friction (Bowden and
Hughes [5], Bowden [4]), but it is a complicated phenomenon which is understood
only partly.. A thin water film covers at least part of the contact surface. Before we
discuss kinetic friction more carefully, two facts from basic mechanics are stated.

1. Coulomb friction: If a rigid body is sliding on a rigid surface, there is a friction
force Ff which is proportional to the normal force N by which the body is pressed
onto the surface

(1) Ff = µN,

where µ is the coefficient of kinetic friction. It is almost independent of the velocity.

2. Viscous friction: If two rigid bodies are moving on a liquid film of thickness d
in between with a relative velocity v, the friction force is given by

(2) Ff =
ηAcv

d
,

where Ac denotes the contact area and η the coefficient of viscosity.

For a review of the current research on the kinetic friction between ski and snow
see Colbeck [6], Colbeck and Warren [8], Glenne [11], and Perla and Glenne [28]. The
snow friction force can be separated into two components. One component is due to
the ploughing, shearing, and compression action of a ski; this component is called
Fc. The second component is the frictional interaction at the ski-snow interface,
where three mechanisms dominate at different film thicknesses: dry, lubricated,
and capillary friction. Dry friction occurs at low temperatures or low velocities
when the water film is insufficient to prevent solid-to-solid interactions between
ski and snow. For thick water films, there is a bridging between the slider and
ice grains which are not carrying any load. This leads to an increase in friction
(Colbeck [7]). Evans et al. [10], and Akkok et al. [2] presented careful investigations
of thermally controlled kinetic friction of ice. However, they obtained results which
suggest that the coefficient of kinetic friction µ is proportional to 1/v, which is
doubtful for our conditions in which higher velocities occur. For hard snow, Fc is
usually disregarded. However, it seems that the influence of the ski stiffness on the
ground pressure distribution is an important factor (Aichner [1]). The dry sliding
friction can be described by a formula of type Eq 1. For the wet sliding friction,
a formula of type Eq 2 should hold. Note that the thickness of the water film and
the area of contact are not known. Ambach and Mayr [3] measured the thickness
of the water film. We have the impression that the theoretical and empirical results
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are not consistent. Without doubt, µ depends on the velocity and the loading. As
a guess, we modified Eq 1 by introducing a velocity dependent part

(3) Ff = (µ + µ1v)N.

A partial result of the experimental results given later encourages such investiga-
tions. Note that a term proportional to v2 cannot be separated from the air drag,
at least for small changes of the load. Moreover, the dependence assumed in Eq 3
for the load is doubtful.

4 Drag area

The drag force Fd is given by

(4) Fd =
1

2
CdAρv2,

where Cd denotes the drag coefficient, A the frontal projected area, ρ the density,
and v the relative velocity between air and body. The drag coefficient Cd is usually
assumed to be independent of the velocity. Habel [13], the Austrian pioneer in ski
friction measurements, strongly stated that the drag coefficient for a skier does not
depend on velocity as long as no aerodynamic means such as spoilers are used. Also,
in Leino et al. [21] and Leino and Spring [20] a constant drag coefficient was used,
but the traversing results given later could not be explained by this hypothesis. For
the interpretation of these results we must recall some facts of aerodynamics (see
Schlichting [30], Hoerner [17], and Schenau’s excellent investigation of speed skating
[32]). Especially for low velocities (up to 15 m/s) the drag coefficient depends on
the velocity. Already 1972 Gorlin et al. [12] presented plots of the drag coefficients
of skiers in different positions for the velocity range from 10 up to 45 m/s. The
drag coefficient is roughly halved from its initial value at a velocity of 10 m/s to a
“nearlyconstant value for velocities between 15 and 45 m/s.

In fluid dynamics the Reynolds number Re plays an essential role. We ask, un-
der what conditions do geometrically similar bodies produce a similar picture of
streamlines. The answer is that at similar points the ratio of the forces must be
the same, independent of time. We consider a stationary flow which streams with
a velocity u mainly in direction x. If one assumes inertial forces ρu∂u

∂x
and friction

forces η ∂2u
∂y2 only, the ratio of these forces is a dimensionless number which is called

the Reynolds number:

(5)
ρu∂u/∂x

η∂2u/∂y2
=

ρV 2/L

ηV/L2
=

ρV L

η
=

V L

ν
=: Re

where V is a characteristic velocity and L a characteristic length. ν = η/ρ is
called kinematic viscosity. Thus, the flow around two similar bodies is similar in all
situations, for which Reynolds numbers are equal (see e.g. Schlichting [30]). In air,
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the flows around cylinders with diameters 1 and 2 are similar when the unperturbed
velocities are 10 and 5, respectively.

The drag force has two components, the friction drag and the pressure drag.
Friction drag is determined by friction forces in the boundary layer. When friction
drag dominates, Cd is inversely proportional to the velocity v (Stokes’ law) and
Fd is proportional to v. This situation occurs for Re ≤ 1. When Re increases from
Re = 1 to Re = 103, the air behind a body becomes turbulent. The velocity in front
of the body is almost zero and increases behind the place where the boundary layer
is separated from the surface. This high velocity v leads to a low pressure behind
the body. In front of the body the pressure is about 1

2
ρv2 higher than behind the

body. The pressure drag force is nearly proportional to 1
2
Aρv2. The drag coefficient

contains the other influences such as shape or nature of the surface (clothing). For
regular bodies such as spheres or cylinders (including elliptical cross sections) the
dependence of Cd as a function of Re is known. Wind tunnel experiments show
that Cd is nearly constant for Reynolds numbers in the range 103 < Re < 105. This
is due to the fact that the boundary layer separates from the surface at the same
location. In the range 105 < Re < 106, Cd rapidly decreases to a lower level. Due to
turbulence in the boundary layer itself, the place of separation of the boundary layer
from the surface shifts to a more downstream position resulting in a smaller wake
behind the body. The kinematic viscosity ν of air is given by ν = 1.4× 10−5 m2/s.
If one puts the diameter of the trunk D = 0.4 m or the thighs D = 0.2 m as
characteristic length, one obtains from a critical Reynolds number 2.8×105 critical
velocities of V = 9.8 m/s and V = 19.6 m/s, respectively. Already Gorlin et al. [12]
point out that the value of Cd for different positions may be individually strongly
different. An optimal position must be choosen for each skier separately. Changes
in the position which are in the first view not essential might affect the value of Cd

by 10 to 20%. Even during the test, elite skiers were not able to remain completely
in an optimal position.

Schenau [32] investigated skaters with a knee angle θ0 and an angle θ1 between
the trunk and a horizontal line. The air friction constant k1 at a velocity v = 12 m/s

(6) k1 =
1

2
CdAρ

depends obviously on θ0 and θ1. The value of k1 at a reference position of θ1 = 15◦

and θ0 = 110◦ is denoted by kn. Schenau [32] found the relation

(7) k1 = kn(0.798 + 0.013θ1)× (0.167 + 0.00757θ0)

for values near to the reference position. Although Cd depends strongly on the
individual skater, Schenau [32] found the following relationship between kn, the
height l, and the mass m of a skater:

(8) kn = 0.0205 l3 m.

In Nachbauer and Kaps [25], the drag area of skiers in a tucked position was con-
sidered as a function of the mass only. With the help of Eq 8, Schenau [32] could
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predict the drag force of six skaters within a standard deviation of 2%. For the
dependence of k1 on the velocity, Schenau [32] found

(9)
k1(v)

kn

=

{
4.028− 0.809 ln v − 0.189v + 0.00866v2 for 7 < v < 14 m/s,

1.561− 0.0705v + 0.00188v2 for 14 < v < 19 m/s.

The correlations of the first and second expression within the brace are given by
r = 0.99 and r = 0.81, respectively.

Erkkilä et al. [9] measured the drag of a skier with roller-skis. The drag area
was found to decrease linearly with velocity increase in the velocity range 5.5 to 10
m/s. The slope was 0.043 for a skier in a semi-squatting position. Spring et al. [31]
measured the drag area of cross country skiers gliding on roller-skis. In the velocity
range from 5.5 to 10.5 m/s the drag area was nearly constant. For a skier in a racing
suit the drag area was 0.65± 0.05 m2 in an upright posture, and 0.27± 0.03 m2 in
a semi-squatting posture.

Roberts [29] used a model in which he approximated the trunk, the lower legs
and the upper arms as cylinders. Depending on the Reynolds number he used the
following values for the drag coefficient:

(10) Cd =


1.2 for 6× 103 < Re < 2× 105,

1.0 for 2× 105 < Re < 4× 105,

0.3 for Re > 4× 105.

5 Equations of motion

The equations of motion are formulated as a system of differential-algebraic equa-
tions (DAEs):

(11)
Mẍ = Fa + Fr

g(x) = 0.

The first expression is a system of nx second order differential equations for the nx

unknown components of x. M denotes the mass matrix, Fa the applied forces, and
Fr the constraint or reaction forces. g(x) = 0 is a system of ng algebraic equati-
ons which are called position constraint equations. From d’Alembert’s principle it
follows for the reaction forces

(12) Fr = −GTλλλ.

GT denotes the transpose of the Jacobian matrix

(13) G =
∂g(x)

∂x
= gx.
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The vector λλλ is called the Lagrange multiplier. Its components are additional un-
knowns. Equation 11 represents a system of DAEs with index 3 since it is necessary
to differentiate Eq 11 three times to obtain a system of ordinary differential equa-
tions in the variables (x,λλλ). If the position constraints in Eq 11 are differentiated
with respect to time, one obtains the velocity constraints

(14) gxẋ = 0.

Replacement of the position constraints in Eq 11 by the velocity constraints yields
a system of DAEs of index 2. This can be solved by recently developed codes, for
example, MEXX21 (Lubich [22], Lubich et al. [23]). The reaction forces Fr are
computed automatically and need not be provided by the user of such a code.

The skier is modeled as a mass point with coordinates x = (x, y) or x = (x, y, z)
in the two-dimensional or three-dimensional case, respectively. The dimension nx

of x is given by 2 or 3, correspondingly. With help of the constraints g(x) = 0 an
arbitrary path can be defined, for example in two dimensions by

(15) y = h(x)

or in three dimensions by

(16) z = h(x, y), y = y(x).

Thus ng the dimension of g is given by 1 or 2. If the applied forces Fa are known,
the motion x(t) of a skier can be computed as a function of time t. We have used an
earlier version of the code MEXX21. More detailed information on DAEs is given
in Hairer and Wanner [15], and representation of the equations of motion as DAEs
in Haug [16]. The applied forces consist of the gravitational force Fg, the drag force
Fd and the friction force Ff

(17) Fa = Fg + Fd + Ff .

5.1 Straight running

The path of the skier is given by Eq 15, the slope by

(18) tan α = h′(x)

(see Fig 3). Note in the situation of Fig 3, it holds that α < 0.

For the unit vectors t and n in the tangential and normal directions, respectively,
and the reaction force Fr in Eq 11 it holds that
(19)

t =

(
cos α
sin α

)
, n =

(
− sin α
cos α

)
, Fr = −

(
− tan α

1

)
λ = N n with N = − λ

cos α
.
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Fig. 3: Model of skier.

The normal force N depends on the Lagrange multiplier λ. If one considers the
kinetic friction Eq 1 and the drag Eq 4, one obtains

(20) Ff + Fd = −(
1

2
ρ(ẋ2 + ẏ2)CdA + µN)t.

The equation of motion is given by:

(21) m

(
ẍ
ÿ

)
=

(
0

−mg

)
+ Ff + Fd + Fr, y − h(x) = 0.

The applied force depends on the Lagrange multiplier λ. If λ becomes positive, the
skier will be in the air and the constraint equation is no longer valid.

5.2 Traversing

For traversing on an inclined plane (Fig 2) α and β are constant. By introducing
the arc length s as the dependent variable, one obtains for the equation of motion
the well known ordinary differential equation (see Kaps et al. [18]):

(22)

s̈ = a + bṡ2

a = −g sin α cos β − µg cos α

b = − 1

2m
ρACd.

The initial conditions are given by

(23) s(0) = s0, ṡ(0) = v0.
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Usually we choose s0 = 0. We tried to vary the initial velocity v0 to obtain different
mean velocities in the test runs (slow, moderate, fast). To this aim, the skier started
from different heights. Therefore, the initial velocity is treated as an unknown
parameter. Writing Eq 22 as a first order system, the new variables s and w = ṡ−v0

are introduced. This yields to

(24)

ṡ = w + v0

ẇ = − ρ

2m
CdA(w + v0)

2 − µg cos α− g sin α cos β

s(0) = 0, w(0) = 0.

The drag area and the coefficient of friction must remain nonnegative. Thus, these
expressions are written as squares of the corresponding parameters

(25) p2
1 = CdA, p2

2 = µ, and p3 = v0.

To obtain a least-squares solution, one needs the derivatives of the components of
Eq 24 with respect to the parameters. A numerical differentiation is not satisfactory
since the numerical code would usually stop before reaching the minimum. With
the following abbreviations

(26)

y1 = s, y3 =
∂s

∂p1

, y5 =
∂s

∂p2

, y7 =
∂s

∂p3

,

y2 = w, y4 =
∂w

∂p1

, y6 =
∂w

∂p2

, y8 =
∂w

∂p3

one obtains the so-called variational equations (see, e.g., Hairer et al. [14]):

(27)

ẏ1 = y2 + p3

ẏ2 = − ρ

2m
(y2 + p3)

2p2
1 − g cos α p2

2 − g sin α cos β

ẏ3 = y4

ẏ4 = − ρ

m
(y2 + p3)y4p

2
1 −

ρ

m
(y2 + p3)

2p1

ẏ5 = y6

ẏ6 = − ρ

m
(y2 + p3)y6p

2
1 − 2g cos α p2

ẏ7 = y8 + 1

ẏ8 = − ρ

m
(y2 + p3)(y8 + 1)p2

1

with the initial values

(28) yi(0) = 0, i = 1, . . . , 8.

This system of ordinary differential equations is integrated numerically.
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6 Experimental results

6.1 Straight running

According to the experimental setup given earlier we have measured the time ti
and the coordinates xi, yi when the skier passed the ith photo cell. The solution
of the equation of motion (Eq 21) depends on the parameter p = (

√
CdA,

√
µ, v0).

We have computed the times t(xi,p) at which the x-component of the solution was
equal to xi. Note that a root finding algorithm is necessary. The parameters were
computed by minimizing the sum of error squares

(29) Σ(p) =
9∑

i=1

(t(xi,p)− ti)
2.

We used the program E04FCF of the NAG library [27]. This program is based on
the Gauss-Newton method near to the solution. It computes the derivatives with
respect to the parameters numerically. We include an additional computation where
the kinetic friction in Eq 19 was replaced by Eq 3. In Tab 1, results of a fast run
are presented. In addition to the deviations Σ, the gradient g of Σ is given. At a
minimum it holds g = 0. gT g is the square of the Euclidean length of g.

v0 CdA µ µ1 Σ gT g

3.4 0.22 8.5 · 10−3 0 0.11 0.11
3.1 0.22 8.1 · 10−3 8.3 · 10−5 0.18 0.47

Tab. 1: Results for straight running.

The results show that it has been difficult to obtain the real minimum, since
the value of gT g is relatively high. The computed coefficient of friction was 0.0085,
which is below the range obtained by the towing and runout method. By these
methods values between 0.01 and 0.25 were obtained. The drag area was 0.22 m2.
This is in agreement with unpublished wind tunnel experiments of the Austrian Ski
Federation, in which the drag area of male world class racers was between 0.13 and
0.19 m2. The results for a velocity dependent kinetic friction gave errors which are
only slightly higher.

6.2 Traversing

According to the experimental setup of Fig 2, we have measured the position of a
point at the ski binding si at time ti corresponding to the ith picture. For the com-
putation of the minimum, we used the algorithm E04GDF of the NAG library [27],
which needs the derivatives of s and ṡ with respect to the parameters. Therefore,
we solved the equation of motion (Eq 27) in variational form. The parameters p
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µ ∆µ v0(m/s) vf (m/s)

0.064 0.060 – 0.067 0.6 10.6
0.128 0.108 – 0.150 11.0 13.4
0.153 0.136 – 0.171 14.7 16.6

Tab. 2: Results for traversing: Coefficients of friction (µ) with 90% confidence
intervals (∆µ), initial (v0) and final velocities (vf ).

were computed by minimizing the sum of error squares

(30) Σ(p) =
m∑

i=1

(s(ti,p)− si)
2.

In Tab 2 the traversing results for different velocities are summarized. The com-
puted coefficients of friction were between 0.06 and 0.15. Note that the normal
force N in the equation of motion was given by N = mg cos α. We ignored the fact
that the skier is actually gliding on a small band which is cut out of the inclined
plane. The values of the friction coefficients are relatively high compared with those
of straight running. A reason might be that compression, ploughing, and shearing
forces contribute to a larger µ. The increase of µ with increasing velocity is not
necessarily a velocity effect, as the snow conditions varied considerably throughout
the measurements due to increasing solar radiation. The increase in the length of
the confidence interval ∆µ for increasing velocities is not caused by a decreasing
number of data points for low, medium, and high velocity, as one might expect.
We used in all cases approximately 100 data points. For low velocities, only every
third picture was used. For the drag area the value 0 was obtained. The confidence
interval was infinitely large.

In the earlier
”
drag area“section, arguments (Gorlin et al. [12], Schenau [32],

Roberts [29]) were given that the drag area depends on the velocity in the inves-
tigated range of velocities. This leads us to the assumption that the model (Eq 4)
is not correct for traversing. Note that during straight running the skier used a
tucked position, whereas during traversing he used an upright position. We have
also performed an experiment in which the skier was loaded in order to investigate
the dependence of the kinetic friction on the load. The mass of the skier was 88
kg, the load 69 kg. One obtained µ = 0.049 and CdA = 0.89. The 90% confidence
intervals were ∆µ = [0.049, 0.053] and ∆(CdA) = [0.61, 1.12], and the velocities
were v0 = 0.37 m/s and vf = 10.5 m/s. Thus the drag area could be computed
within a still acceptable interval of confidence. An explanation could be that in the
case of a skier loaded with a lead vest and a knapsack, the critical Reynolds number
was reached at a lower velocity.
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7 Conclusion

In this study a new method to determine the coefficient of kinetic friction µ and
the drag area CdA was presented. For straight running µ and CdA were computed
simultaneously for a track with variable inclination. The results correspond well
with literature values. To our knowledge, we have performed the first measurements
for traversing. We could determine the kinetic friction. Values of 0.06 to 0.15 appear
to be high compared with those for straight running. However, due to increasing
solar radiation the snow became wet and soft - a situation in which the friction
is usually high. The drag area could not be determined. This failure is probably
due to inappropriate model assumptions. The skier traversed in an upright position
at speeds from 0 to 17 m/s. In this velocity range the drag area is probably not
constant as it was assumed in the calculations.

The method requires the collection of position/time data of the skier. Two mea-
surement techniques were tested: timing and cinematography. In the first case,
accurate time (±0.1 ms) and position data (±1 cm) of nine photocells were obtai-
ned at a long test run of about 340 m. In the second case the time data are assumed
to be exact and the position data have an error of ±10 cm. This relatively large
error is mainly caused mainly by two facts: first, the test course was not ideally
planar; and second, the track of the skier was approximated by a straight line. This
task could not be performed by the skier exactly. The results indicate that both
methods are adequate for collecting the required data. However, the analysis of the
cinematographical data is much more complicated and time consuming.

For more detailed investigations regarding the dependence of the drag area on
velocity and the dependence of kinetic friction on velocity or loading, one has to
improve the measurement setup. This was accomplished on the runout at the Olym-
pic ski jumping site in Seefeld, where 20 photocells were built up and geodetically
surveyed. Time data of straight runs of a skier were collected but have not yet been
analyzed. At the same time, video measurements were taken which will allow to
compare the two data collection methods.
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