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Abstract

We discuss a new algorithm for time-series analysis with large gaps. Our algorithm uses
special techniques for selection and deletion of frequencies. Frequency improvement is done by
multidimensional nonlinear optimization combined with grid searching. The results are checked
by statistical tests. As a demonstration, we give an evaluation of an ill-conditioned test-example
and a re-evaluation of the periods of the §-Scuti star §2 Tauri.
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2 Selection of Frequencies

A set of data m(t) = (m;(t;)), 7 = 1,..., M,
such as time-dependent brightness data, is to
be approximated by s = (s;) :

N
s; = Ao+ Aicos(2m fit; —¢i). (1)

1=1

The amplitudes A;, frequencies f;, phases ¢;, as
well as the number N of frequencies considered
are unknown. The data and, perhaps, the times
contain observational errors. We minimize

|lm = s||2 = [[r[]z = min ! (2)

in the least squares sense. In this paper, we
show how to choose N and estimate the sets A,
f, and ¢. The quality of the fit is checked by
statistical means.

The diagram illustrates the main algorithm.
The individual steps will be described in the fol-
lowing sections.

The power function p(f) is the criterion for the selection of frequencies:

(Eﬁl cos (2 f t;) mJ')Z n (ZfMﬂ sin (27 f1;) mﬂ')z

p(f) =

S o (2 1)

SN sin® (27 ft;) (3)

Proceedings of 5* ESO/ST-ECF Data Analysis Workshop, April 26-27, 1993
IThis work was supported by the Austrian Research Foundation under grant P8568-PHY and by the Austrian
Academy of Sciences (Space Research / National Programs)



198 ‘ ‘ M. Méossner, J. Pfleiderer

e Because p(f) is a very rapidly oscillating function, high resolution is necessary for a clear
image. Optimal resolution is given by Af = 0.1% with T" = tp; — t;. That means one has
to compute p(f) for about n, = 107 (finaz — fimin) values. In the case of 62 Tauri we have
T ~ 1700 d and f,,., = 100 d~* and therefore n, = 1.7-10°. At this place it is crucial to take
a proper compromise between required accuracy and computational costs.

e In order to overcome local oscillations we smooth p(f) by replacing it by the maximum within
overlapping intervals.
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Figure 1: frequency versus (smoothed) power for # Tauri

e The frequency vector used as starting value for the minimization routine is appended by up
to ngq4q values of frequencies, corresponding to maxima of the smoothed power function.

e If in the course of the algorithm more than 7n,,,, frequencies are proposed, only those 7,4,
frequencies are accepted that correspond to the strongest contribution in power.

3 Adjustment of Frequencies — Nonlinear Minimization

Given a start frequency vector f = (fi,..., fx) we solve the following overdetermined system of
nonlinear equations:

g(f) = <ao(f) + Zai(f) cos(2m f; t;) + Zb,-(f) sin (27 f; tj)) A (4)

For the amplitudes ao(f), a:(f), b;(f) we take the best fit at the current frequency vector (see
below). Because M > N, the code tries to minimize

Ilg(f) — m |l = min! (5)
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by varying f, in the least squares sense. For this we use the damped Gauss-Newton code nlscon
(see Deuflhard [3, 4], coding Novak and Weimann [10]). For testing purposes we used the lecture
program newton (Hairer [8]), which works quite well.

4 Determination of Amplitudes — Linear Minimization
The minimization routine needs a function which computes the amplitudes a :

A-a~m

1 cos(2mfity) -+ cos(2mfnty) sin(27wfity) -+ sin(27mfaty)
A= S 0
1 cos(2mfitpy) -+ cos(2mfnty) sin(2wfity) -+ sin(27 fytar)
a:(am Ayy **cy AN, blv"'vbN)t /rrl’:(777'1a"'7/rnM)LL

If Equation (6) has full rank, a unique a exists which minimizes ||Aa — m/||,. This solution is
called the least squares solution (see Golub and Van Loan [7]).

The least squares solution assumes an exact matrix A and tries to get the best fit for the
data m, which are assumed to contain errors. However, in our situation time data are given with a
precision of 10=° d. We search for frequencies of the order of 15 d~'. This leads to errors in A of size
1073, On the other side, brightness data have errors which are bounded by one to two thousands
of a magnitude. Hence, both sides of Equation (6) show errors of the same order of magnitude.
Therefore we use the method of total least squares (see Golub and Van Loan [6], Van Huffel and
Vandewalle [11, 12]).

Astronomical time series have usually pronounced gaps between groups of data (daily, monthly,
and seasonal gaps). The linear system (6) is, in such cases, ill-conditioned. Therefore, one has to
choose carefully the numerical algorithms. For least squares we use singular value decomposition [7]
and for total least squares we use an implementation by Mdssner which is based on the paper of
Golub and Van Loan [6] and the Lapack library [5].

5 Deletion of Frequencies

In practical examples, it is possible that the strongest power-amplitude is caused by aliasing effects
(see test example). Nevertheless, if the correct frequencies are chosen, amplitudes for aliased
frequencies become small and can therefore be deleted. We use the following criteria:

e If there is a closely spaced pair of frequencies, a special routine is called. This routine inserts
new frequencies and checks whether a better fit exists. If the old pair was a resonance
phenomenon, it will be deleted in a later stage.

e Frequencies which are very closely spaced are substituted by their mean value.
o Frequencies with small amplitudes are deleted.

e Take only the strongest n,,,, — 3 signals into the next iteration. This enables the code to try
new frequencies, even if the frequency vector was already full.

e After a certain number of iterations, a special deletion routine is called. This simulates a
restart with better initial data.
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6 Grid Search

The main break criterion for our algorithm gives the norm of the residual vector of Equation (4)
or (6), respectively. However, the norm of the residuals shows strong oscillations as function of any
component of the frequency vector f. Therefore, most optimization techniques tend to catch one
of the local minima, instead of the absolute minimum. The typical frequency for these oscillations

is well known (Af = 5-). Therefore, we do a grid search in each component of f (with grid size

0.25/T) at the end of each iteration of the main loop.

7 Statistical Package

After successful exit or after 4,4, iterations, iteration stops and a statistical package is called:
e Tests are performed on the randomness of the residual vector.
e Confidence intervals are computed for the obtained parameters.
e A test whether all frequencies are necessary is in preparation.

With the Student’s t distribution with v degrees of freedom A(t|v) (see Abramowitz and S-tegun
[1]) and its S-fractil ¢4, defined by A(ts,|v) = B, we have the probability (see Mendenhall et al.

[9]):
P(Ipi,w -pil < 5i) =1-p
6 =S \/Ci tip/am—sn-1 (7
- ”rll2 - t -1
S=rosn=t = (U7

Here p;,, is the true value of the computed parameter p; (= Ai, fi, or ¢;). B is the level of
significance of the confidence interval and J denotes the Jacobian of the minimization function
g(f). Altogether, we have confidence intervals (pi £ 6:(B)) related to the error probability 3.

i1

8 A Test Example

For testing purposes we created data sets for the following signal

sj = 1+4cos(2m6.5t;) + 6 cos(2r8.6¢; + 1) + (8)
5cos(2m9.3¢; — 2) + 3 cos(27 18.0¢; — 3) +r;

We selected the time distribution:

tj=%f—ei+d+300y with =i+ 14 nyep - (d+ gy - y)

9)

1=0,...,05e — 1 d=0,...,n45 — 1 Y=0,...,nyear — 1

Our test-example uses Nstep = 20, Ngay = 30, and nyeq, = 2. Errors were simulated by a uniform
random generator. Given two uniform random numbers U; and U,, one gets, by the transformation
G = ov/=2In U, cos(2nUs) + i (see Abramowitz and Stegun [1]) a Gaussian random number G
with mean y and variance o. The test example contains Gaussian errors with mean u = 0 and
variance o = 0.2. Errors in the time data were simulated by adding, to t;, a uniformly distributed
random number of range +£10~%.

The power of the given example has aliasing maxima at 5.5,7.5,8.3, 9.6, 10.3, 10.6. As starting
vector for the frequencies we took a single wrong frequency f = (3.0). The above mentioned
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parameters were chosen as follows: n, = 3000, frnin = 5, frmaze = 20, Naga = 7, Nmae = 12 and
imaz = 10. The code stopped after 5 iterations, because the residuals approached the statistical
limit. The result for the error probability 8 = 0.001 is

frequency amplitude phase
0.000000 1.015 (£0.038)
3| 6.500022 (£0.000029) | 3.990 (+£0.054) | 0.020 (40.021)
1| 8.599976 (+0.000019) | 5.985 (£0.054) | 0.976 (£0.016)
2| 9.300000 (40.000023) | 4.997 (+£0.054) | -1.997 (40.016)
4| 17.999928 (£0.000040) | 2.952 (+£0.054) | 2.822 (+£0.028)

e number of
data
17-28 248
316-322 248
347-358 112
625-738 1145

1355-1359 80

1738-1759 1190

9 Re-evaluation of the d-Scuti star 6?2 Tauri

The examined data are due to Breger [2]. The 2806 measurements are sampled over five years and
contain large gaps (see table below). The strongest five frequencies are well known and have been
published by Breger [2]:

results of Breger
frequency amplitude
13.229653 0.0066
13.480733 0.0026
13.693597 0.0045
14.317637 0.0027
14.614537 0.0012

In the following we indicate the ten strongest signals as obtained by our analysis. The confidence
intervals correspond to an error probability of 4 = 0.001. The given phases (radians) refer to the
epoch JD 2445017.0. Particularly the weak signals must be checked in further campaigns. Of special
interest is the isolated weak signal at 26.18 which cannot be explained by aliasing effects.

frequency amplitude phase
0.000000 -0.00003 (£0.00016)
71 12.172308 (£0.000088) | 0.00075 (40.00025) | 0.61 (+0.68)
1] 13.229653 (+£0.000010) | 0.00654 (£0.00026) | 2.60 (+£0.08)
4| 13.480717 (£0.000027) | 0.00246 (+0.00025) | -1.86 (+£0.21)
6 | 13.647071 (40.000084) | 0.00085 (+0.00025) | -2.55 (40.65)
2 | 13.693601 (40.000017) | 0.00428 (40.00024) | 1.33 (£0.12)
9 | 13.827642 (£0.000104) | 0.00063 (£0.00024) | -2.66 (£0.81)
3 | 14.317639 (£0.000033) | 0.00258 (£0.00032) | 0.81 (40.22)
8 | 14.323414 (£0.000140) | 0.00063 (£0.00033) | 3.05 (40.94)
5| 14.613782 (£0.000060) | 0.00111 (£0.00025) | 0.03 (40.47)
10 | 26.189602 (40.000126) | 0.00050 (+0.00023) | -0.34 (+£0.97)
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