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model:

m

o

aim:

s+ m=(m;), s=(s;), r=(rj), j=1,...

N
Ay + Z A;cos(2m fit; + ¢;)

g=1
N N

ag + Z a; cos(2m fit;) + Z b; sin(27 f; t;)
) i=1

measured value at time ¢;

computed value at time ¢;

error in measurement

choose N (number of frequencies)

frequencies f;,

amplitudes A;, and phases ¢; (resp. a; and b;)
which minimize

[|7[| = [lm — ]| = min !
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Selection of Frequencies

Our main criterion for selection of frequencies gives the power function. We use:

(1)

(Z]-A’il cos(2m f ;) mj)2 ( ;\il sin(27 ft;) mj>2
plf) = M cos?(2T ft;) i M sin?(27 ft;)

9= g=

and if possible we change to:

(2)

5 o 2 " 7
p(f) = \/; <Z: COS(??Tftj)TTLj) + (Z sin(27rftj)mj>

p(f) is a very rapidly oscillating function. Therefore, high ‘resolution for a
clear image is necessary.

In order to overcome local oscillations we smooth p(f) by taking the maximum
over small intervals. We build a second table to remember the location of the
maxima in these small intervals.

Up to nins maxima of the smoothed power-function are added to the frequency
vector. This enlarged frequency vector is used as starting value for the mini-
mization routine.

If there are more than n,., frequencies only the strongest n,,q, signals of the
composed frequency vector are taken.

Deletion Criteria

If there is a pair of frequencies, which are close together, a special routine is
called. This routine inserts new frequencies and checks whether there exists
a better fit or not. If the old pair was a resonance phenomenon, it will be
deleted in a later stage.

e Irequencies which are very close together are substituted by its mean value.
e Irequencies with small amplitudes are deleted.
e Take only the strongest nmaxz — 2 signals. This enables the code to try new

frequencies, if the frequency vector is already full.
After sterl ~ 5 iterations a special deletion routine is called. This simulates
a restart with better initial data.



Adjustment of Frequencies — Nonlinear Minimization

Given a start frequency vector f = (fi,..., fx) we solve the following overdetermined system of
nonlinear equations:

g(f) = (ao(f) + Zai(f) cos(2m f; t;) + sz(f) sin(27 f; tj)) | ~m (1)

=1 i=1

For the amplitudes ao(f), a;(f), b;(f) we take the best fit at the current frequency vector (see
below). Because M > N, the code tries to minimize

Il9(f) — m|[ls = min!, (2)

by varying f, in the least squares sense. For this we use the damped Gauss-Newton code nlscon
(see Deuflhard, coding Novak and Weimann). For testing purposes we used the lecture program
newton (Hairer), which works quite well.

Determination of Amplitudes — Linear Minimization

The minimization routine needs a function which computes the amplitudes a :

A-arm

1 cos(2mfity) -+ cos(2mfyty)  sin(27wfity) -+ sin(27fyty)
A=| : : : : : (3)
1 cos(2mfityr) -+ cos(2mfytar) sin(2mwfityr) -+ sin(27 fytar)
a:(G'O: ai, *°*, AN, bl)"'abN)t m:(mla"'amM)t

There exist two ways of solving the given system of equations:

e least squares solution (lsq)
e total least squares solution (tlsq)

If the given equation has full rank, then there exists a unique a wich minimizes ||Aa — b||,.
This solution is called the least squares solution.

Least squares solution assumes an exact matrix A and tries to get the best fit for the data
m, which are assumed to contain errors. However, in our situation time data are given with a
precision of 1073d. We search for frequencies of the order of magnitude of 15 d™"'. This leads to
relative errors in A of size 1073, On the other side luminosity data have errors which are bounded
by one to two thousands of a magnitudine. Both sides of the equation show errors of the same
order of magnitude. Therefore we use the method of total least squares (see Golub and Van Loan,
Van Huffel and Vandewalle).



Determination of Amplitudes — Linear Minimization

The minimization routines need a function which computes the amplitudes

A-axm
1, cos(2mfity) -+ cos(2nfnty) sin(27wfity) -+ sin(27 fnty)
A= : : : : =
1, cos(2mfitar) -+ cos(2mfntn) sin(2rwfitnr) -+ sin(27 fntar)
a:(ao ai -+ an bl bN)t m:(ml mM)t

Least Squares Solution (Isq)

This algorithm assumes an exact matrix A and tries to get the best fit for
the data m. We compute

min{]lr” r=m-m', Ja: Aa:m’}

The implementation is based on the QR-decomposition of A and uses
Lapack [6]

Total Least Squares Solution (tlsq)

Both, matrix A and right side m are assumed to be incorrect. In our case,
one measurement requires about a minute. Within this time, our oscillation
goes on some few degrees. Therefore A should be treated as inexact. In this
case we compute

m1n{||(r|E)||F ‘ r=m-m/, E=A- A Ha:A’azm'}

For theoretical investigations see Van Loan [7], coding is due to Mdssner.

Here ||(r|E)||r denotes the Frobenius Norm of the composed matrix (v|E)

M
11 B)lr = | D 2+ D ek

M N
g=1 g=1 =1



Adjustment of Frequencies — Nonlinear Minimization

Given a start frequency vector f = (fi,..., fn) we solve the following over-
determined system of nonlinear equations:

g(f) = (ao(f) + Zai(f) cos(2m fi t;) + Zb sin(27 f; t )) ~m

=1

For the amplitudes ao(f), ai(f), b:(f) we take the best fit at the current
frequency vector (see below). Because M > N, the code tries to minimize

Il9(f) — m || = min!

in the least squares sense.

Numerical Methods:

newton: method of Gauss-Newton with A-strategy.
This method is due to Hairer [2] and Deuflhard [3].

nlscon: damped Gauss-Newton method due to Deuflhard [4]
The code is due to Novak and Weimann [5]
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The power spectrum
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Example: Delta Scuti star > Tauri

e 2806 data sampled over 5 years.

e The data contain large gaps
— about 20 hours between most days
— about 300 days between every year.

e The first five frequencies are already published by Breger.

daTe number of
data
17-28 248
316-322 248
347-358 112
625-738 1145

1355-1359 80

1738-1759 1190

results of Breger

frequency | amplitude

0.0066
0.0026
0.0045
0.0027
0.0012

13.229653
13.480733
13.693597
14.317637
14.614537

Following we show the first four days of data:
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e 2806 data sampled over 5 years.
e The data contain large gaps.
— about 20 hours between most days.
— about 300 days between every year.
o The first five frequencies are already published by Breger.

days number of
data
17-28 248
316-322 248
347-358 112
625-738 1145

1355-1359 80

1738-1759 1190

Results:

Example: Delta Scuti star > Tauri

results of Breger

frequency | amplitude
13.229653 0.0066
13.480733 0.0026
13.693597 0.0045
14.317637 0.0027
14.614537 0.0012

The given confidence intervals have an error probability of 3 = 0.001

frequency [d™!] amplitude [mag] phase [deg]
0.000000 -0.00003 (+£0.00016)

7 |12.172308 (£0.000088) | 0.00075 (£0.00025) | 35 (+39)
1 |13.229653 (£0.000010) | 0.00654 (£0.00026) | 149 (+5)
4 | 13.480717 (+£0.000027) | 0.00246 (+0.00025) |-106 (£12)
6 | 13.647071 (40.000084) | 0.00085 (£0.00025) |-146 (+37)
2 |13.693601 (0.000017) | 0.00428 (£0.00024) | 76 (+7)
9 |13.827642 (40.000104) | 0.00063 (0.00024) |-153 (+47)
3 |14.317639 (40.000033) | 0.00258 (0.00032) | 47 (+12)
8 |14.323414 (£0.000140) | 0.00063 (£0.00033) | 175 (£54)
5 |14.613782 (£0.000060) | 0.00111 (+0.00025) 2 (£27)
10 | 26.189602 (£0.000126) | 0.00050 (+£0.00023) | -19 (&56)




A Test Example

For testing purposes we created data sets for the following signal

s; =144 cos(2m 6.5¢;) + 6 cos(2r 8.6¢; + 1) +

1
(1) 5 cos(2mr 9.3t; —2) + 3 cos(27 18.0t; — 3) + r;
We selected the time distribution:
0.22 : . A
tji=———+d+300y with J=t+14ngep (d+ ndey - y)
(2) Nstep — 1
2= 0. 00 s Mgt — 1, d=0,... 04y — 1, and T Dyvww y By = s

The given test example uses nsep = 20, n4qy = 30, and nye.r = 2. Errors were simulated
by a uniform random generator. Given two uniform random numbers U; and U, one gets
by the transformation: G = o+/—21lnU; cos(27U,) + p a Gaussian random number with
mean g and variance o (Devroye). The test example contains Gaussian errors with mean
¢ = 0 and variance o = 0.2. Errors in time data were simulated by adding to ¢;, a uniformly
distributed random number of range +10~*

This example shows strong aliasing structures. The power has maxima at 5.5, 7.5, 8.3,
9.6, 10.3, and 10.6. As starting vector for the frequencies we took the foolish input f = (3.0).
Our algorithm stops after 5 iterations, because the residuals approache the statistical limit.

The result for the error probability 8 = 0.001 is

frequency [d™?] amplitude [mag] phase [rad]
0.0000000 1.005 (+0.018)
3| 6.4999999 (+£0.0000066) | 4.006 (+£0.026) |-0.001 (%£0.009)
1| 85999981 (40.0000044) [ 6.016 (+0.025) | 1.004 (40.006)
2| 9.3000030 (£0.0000054) | 4.995 (£0.025) | -2.002 (+0.007)
4 [ 17.9999847 (4£0.0000090) | 2.995 (+0.024) | 2.986 (+0.013)




Statistical Package

After successful exit or at :¢max iterations, iteration stops and the statistical
package is called:

o Tests on the randomness of the residual vector are performed.
e Compute confidence intervals for the computed parameters.

o Test whether all frequencies are necessary or not (planned).

Our parameter vector is p = (Ao, A1,..., AN, [, s [Ny B1ye .y BN).
With the Student’s t distribution with v degrees of freedom

v+1
r t 2\ —(v+1)/2
At]y) = —@/ (1+5) dr

i (3) -
and its f-fractil 3, defined by:

Altgulv) = B,

we have the following probability [8]:

P(
6 =S \/cii ti—pja,m—3N-1
||| t \—1
= = (ST
==t %= (7)),

piw true value of computed parameter p;
Iv) significance level of confidence interval.
J  Jacobian of minimization function g(f).

pi,w——pi|<5i>=1—ﬂ

This gives the confidence interval
[pi — &, pi + 6i]

with error probability £.



Statistical Package

The statistical package has following aims:

e Decide whether weak signals are real or not
— Compare point to point sigma to model sigma. Fisher test.
— Test randomness of residual vector.
— Compute confidence limits.
e Decide which one of closely aliased signals is the real one.
— Compare point to point sigma to model sigma.
— Test randomness of residual vector.

For this we perform following tests:

e Do basic statistics:
— mean, standard deviation, ...
e Test randomness of the residual vector:
— Do runs test.
— Compute confidence intervals for the mean and the variance
of the residual distribution.
— Perform Kolmogorov-Smirnov type tests.
* Two Kolmogorov-Smirnov tests.
* Cramer-von Misés Test.
* Anderson-Darling test.
e Compute accuracy of the result.
— Compute confidence intervals.
— possible further tests are:
* Tests on the reliability of the results.
* Fisher test for the safety of weak signals.



Runs Test

The runs test tests the randomness of the sign changes in the residual vector.

p number of positive residuals.
n number of negative residuals.
k  number of runs (= number of sign changes + 1)

If X is the random variable which gives the number of runs, then the probability
P(X = k) is given by (Brownlee):

EE e
n+p ’ ;
(1) P(X = k) = n-1 np—l n—1Y) (p—1
(D 606D
(")
EX)=1+%, w)=3LZ0
(2) t’ t2(t — 1)

s =2pn t=p+n

Tests: Let z be the realization of X

o Check whether z is in the interval [ E(X) — V(X), E(X) + V(X)].
o Compute P(|X — E(X)| > |z — E(X)|)

Efficient computing:

(3) <Z) =exp(Inl'(a+1)—InT'(b+1) —InT(a — b+ 1))

0 1060 (+~E)i{etr-) - -
+In(27) + In (co-}—i_ci_) Te

i=1$-}_7:_1

This representation is due to Lanczos, coefficients for € = 10~!* are due to Mdssner.



The Anderson-Darling Test

_ [® (Fulz) — F(2))’
Ay —-n/_oo F(x)( ZF @) dF(z)

(
:_n——z2z—1)lnY+((n—Z)-i-l)lH( Yi)
with

1, fort>0,

0, else.

=
:IH
><

s with x(t) = {

X:; sample of observations
F(z) the hypothetisized distribution
Y Y=F(X;)




Limiting distribution

A(z) = limp—o P(A, < z) (Anderson and Darling):

A@):é%@m(g—gﬁ §x1ymmaa)
(3) o= (1 — %) exp (—(M ;1)%2) a;_1, ag =1
1

Ha&=£wﬂwa®@ 2>0, b>0,
(4) 2 z? 1
fly;z,b) = e 8 <—y2 (1 t m))

FIGURE 1. The Anderson-Darling Function A(z)
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Approximations to the Anderson-Darling test statistic

1
(5) Ay i8] = = i e 20, <0
1+ exp ( > cimi/z)
The unknown coefficients ¢;, ¢ = —m,...,n were computed by least squares fitting the

limiting distribution (M&ssner, Netzer, and Pfleiderer).

TABLE 1. Coeflicients for approximations of the Anderson-Darling function A(z)

model | m | n Cc_; C;
1 2 2 C.1 = 0.0 Co = 0.0
€53 = 0.90005634667 c1 = 0.0
¢y = —1.4486936792
2 212 |cy = 0.0 cg = —0.47672874207
A — 1.0720379724 (o — 0.0
co = —1.1785883752
3 3 12|eq = 2.018 = —1.784
-y = —0.03287 i = 0.0
c_.3 = 0.2029 Cy = —0.9936
4 312le.y = 2.7173177700 cg = —2.1714528342
C_g = —0.46999842833 e = 0.0
c_3 = 0.29285553148 ¢y = —0.95569185238
5 6 |6 |c1 = —30.985724303897379 cg = 33.660074457587372
Ceg = 22.198442088714700 c1 = —26.467806706020571
c—3 = —10.427567803868353 cg = 11.725227409412259
i = 3.330806575355391 c3 = —3.461437492448171
B = —0.5942755083462223 ¢y = 0.3647412183007341
g = 0.04473918400266183 cs = 0.03378178495561017
e = —0.008249382832328045
6 9(18|coy = 504.96559880722138680323 co = —559.71696098878785161040
c_y = =—361.15067999211410859866 c; = 491.15232058574365070413
c_3 = 205.95482419709786532568 ca = —339.70147526769415082831
c—4 = —91.74425625354047667882 g = 178.72304282215231741440
Gy = 31.09525679720687922258 cg4 = —69.81115632571493771504
c_g = —7.64077211104759798805 cs = 19.33154893753456654489
ce7 = 1.26815570921344052725 cg = —3.56347332952716023287
L = —0.126112815408544631380 cr = 0.390428145406831375016
g = 0.00564542439518663198826 | cs = —0.0191817094491927644459

Models 1 and 2 give very fast approximations which use only 3 multiplications, one root,
and one exponentiation. The achived accuracy of 0.01 is high enough for practical purposes.
Models 5 and 6 are approximations with enhanced precision, where the computation of
equations (3,4) is quite expensive. These representations have an accuracy of approximately
7 digits. For a machine with a precision of € &~ 107'®* model 5 gives the best approximation.
The high precision approximation of model 6 needs — due to roundoff errors — a machine
with a precision of better than € < 10720,



Confidence Intervals

For the computation of the confidence intervals we assume the model
N

(1) s(t;) = ao+ D aicos(2m fit; + é:), gl M
1=1

We use the parameter vector:

(2) p:(flv"'va,aOaala-"aaN7¢la---7¢N)-

With the Student’s t distribution with v degrees of freedom

F (m) t T2 —-(v+1)/2
(3) A(tlv) = —2/ (1 + —-) dr
VT T () J=e0 v
and its S-fractil ¢5,, defined by:
(4) Altgplv) = 8,
we have the following probability:
P(lpiw —pil < b)) =1-5,
6; = S \/cii ti_pja,M-3N -1,
[l t7y-1
= w=((JJ
v S SR
piw true value of computed parameter p;
B significance level of confidence interval.
r  residuals of model. r = (r;), r; = s(t;) — data;.
J  Jacobian of model function J = (jac;;), jac;; = 9s(t;)/dp;.

This gives the confidence interval
(6) [pi — 6, pi + 6]
with error probability 3.
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